|  Help  |  About  |  Contact Us

Publication : Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis.

First Author  Pedersen LC Year  2003
Journal  J Biol Chem Volume  278
Issue  16 Pages  14420-8
PubMed ID  12562774 Mgi Jnum  J:240301
Mgi Id  MGI:5882911 Doi  10.1074/jbc.M210532200
Citation  Pedersen LC, et al. (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J Biol Chem 278(16):14420-8
abstractText  EXTL2, an alpha1,4-N-acetylhexosaminyltransferase, catalyzes the transfer reaction of N-acetylglucosamine and N-acetylgalactosamine from the respective UDP-sugars to the non-reducing end of [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol, an acceptor substrate analog of the natural common linker of various glycosylaminoglycans. We have solved the x-ray crystal structure of the catalytic domain of mouse EXTL2 in the apo-form and with donor substrates UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine. In addition, a structure of the ternary complex with UDP and the acceptor substrate analog [glucuronic acid]beta1-3[galactose]beta1-O-naphthalenemethanol has been determined. These structures reveal three highly conserved residues, Asn-243, Asp-246, and Arg-293, located at the active site. Mutation of these residues greatly decreases the activity. In the ternary complex, an interaction exists between the beta-phosphate of the UDP leaving group and the acceptor hydroxyl of the substrate that may play a functional role in catalysis. These structures represent the first structures from the exostosin gene family and provide important insight into the mechanisms of alpha1,4-N-acetylhexosaminyl transfer in heparan biosynthesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression