|  Help  |  About  |  Contact Us

Publication : EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylose kinase-dependent manner.

First Author  Nadanaka S Year  2013
Journal  J Biol Chem Volume  288
Issue  13 Pages  9321-33
PubMed ID  23395820 Mgi Jnum  J:197845
Mgi Id  MGI:5494784 Doi  10.1074/jbc.M112.416909
Citation  Nadanaka S, et al. (2013) EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylose kinase-dependent manner. J Biol Chem 288(13):9321-33
abstractText  Mutant alleles of EXT1 or EXT2, two members of the EXT gene family, are causative agents in hereditary multiple exostoses, and their gene products function together as a polymerase in the biosynthesis of heparan sulfate. EXTL2, one of three EXT-like genes in the human genome that are homologous to EXT1 and EXT2, encodes a transferase that adds not only GlcNAc but also N-acetylgalactosamine to the glycosaminoglycan (GAG)-protein linkage region via an alpha1,4-linkage. However, both the role of EXTL2 in the biosynthesis of GAGs and the biological significance of EXTL2 remain unclear. Here we show that EXTL2 transfers a GlcNAc residue to the tetrasaccharide linkage region that is phosphorylated by a xylose kinase 1 (FAM20B) and thereby terminates chain elongation. We isolated an oligosaccharide from the mouse liver, which was not detected in EXTL2 knock-out mice. Based on structural analysis by a combination of glycosidase digestion and 500-MHz (1)H NMR spectroscopy, the oligosaccharide was found to be GlcNAcalpha1-4GlcUAbeta1-3Galbeta1-3Galbeta1-4Xyl(2-O-phosphate), which was considered to be a biosynthetic intermediate of an immature GAG chain. Indeed, EXTL2 specifically transferred a GlcNAc residue to a phosphorylated linkage tetrasaccharide, GlcUAbeta1-3Galbeta1-3Galbeta1-4Xyl(2-O-phosphate). Remarkably, the phosphorylated linkage pentasaccharide generated by EXTL2 was not used as an acceptor for heparan sulfate or chondroitin sulfate polymerases. Moreover, production of GAGs was significantly higher in EXTL2 knock-out mice than in wild-type mice. These results indicate that EXTL2 functions to suppress GAG biosynthesis that is enhanced by a xylose kinase and that the EXTL2-dependent mechanism that regulates GAG biosynthesis might be a "quality control system" for proteoglycans.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

18 Expression

Trail: Publication