|  Help  |  About  |  Contact Us

Publication : Developmental emergence of cortical neurogliaform cell diversity.

First Author  Gomez L Year  2023
Journal  Development Volume  150
Issue  15 PubMed ID  37401408
Mgi Jnum  J:338974 Mgi Id  MGI:7518527
Doi  10.1242/dev.201830 Citation  Gomez L, et al. (2023) Developmental emergence of cortical neurogliaform cell diversity. Development 150(15):dev201830
abstractText  GABAergic interneurons are key regulators of cortical circuit function. Among the dozens of reported transcriptionally distinct subtypes of cortical interneurons, neurogliaform cells (NGCs) are unique: they are recruited by long-range excitatory inputs, are a source of slow cortical inhibition and are able to modulate the activity of large neuronal populations. Despite their functional relevance, the developmental emergence and diversity of NGCs remains unclear. Here, by combining single-cell transcriptomics, genetic fate mapping, and electrophysiological and morphological characterization, we reveal that discrete molecular subtypes of NGCs, with distinctive anatomical and molecular profiles, populate the mouse neocortex. Furthermore, we show that NGC subtypes emerge gradually through development, as incipient discriminant molecular signatures are apparent in preoptic area (POA)-born NGC precursors. By identifying NGC developmentally conserved transcriptional programs, we report that the transcription factor Tox2 constitutes an identity hallmark across NGC subtypes. Using CRISPR-Cas9-mediated genetic loss of function, we show that Tox2 is essential for NGC development: POA-born cells lacking Tox2 fail to differentiate into NGCs. Together, these results reveal that NGCs are born from a spatially restricted pool of Tox2+ POA precursors, after which intra-type diverging molecular programs are gradually acquired post-mitotically and result in functionally and molecularly discrete NGC cortical subtypes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression