|  Help  |  About  |  Contact Us

Publication : Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy.

First Author  Zhou H Year  2018
Journal  Cell Death Differ Volume  25
Issue  6 Pages  1080-1093
PubMed ID  29540794 Mgi Jnum  J:268527
Mgi Id  MGI:6269954 Doi  10.1038/s41418-018-0086-7
Citation  Zhou H, et al. (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25(6):1080-1093
abstractText  Disturbed mitochondrial homeostasis contributes to the pathogenesis of cardiac ischemia reperfusion (IR) injury, although the underlying mechanism remains elusive. Here, we demonstrated that casein kinase 2alpha (CK2alpha) was upregulated following acute cardiac IR injury. Increased CK2alpha was shown to be instrumental to mitochondrial damage, cardiomyocyte death, infarction area expansion and cardiac dysfunction, whereas cardiac-specific CK2alpha knockout (CK2alpha (CKO) ) mice were protected against IR injury and mitochondrial damage. Functional assay indicated that CK2alpha enhanced the phosphorylation (inactivation) of FUN14 domain containing 1 (FUNDC1) via post-transcriptional modification at Ser13, thus effectively inhibiting mitophagy. Defective mitophagy failed to remove damaged mitochondria induced by IR injury, resulting in mitochondrial genome collapse, electron transport chain complex (ETC) inhibition, mitochondrial biogenesis arrest, cardiolipin oxidation, oxidative stress, mPTP opening, mitochondrial debris accumulation and eventually mitochondrial apoptosis. In contrast, loss of CK2alpha reversed the FUNDC1-mediated mitophagy, providing a survival advantage to myocardial tissue following IR stress. Interestingly, mice deficient in both CK2alpha and FUNDC1 failed to show protection against IR injury and mitochondrial damage through a mechanism possible attributed to lack of mitophagy. Taken together, our results confirmed that CK2alpha serves as a negative regulator of mitochondrial homeostasis via suppression of FUNDC1-required mitophagy, favoring the development of cardiac IR injury.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Authors

4 Bio Entities

Trail: Publication

0 Expression