|  Help  |  About  |  Contact Us

Publication : UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice.

First Author  van der Horst GT Year  2002
Journal  DNA Repair (Amst) Volume  1
Issue  2 Pages  143-57
PubMed ID  12509261 Mgi Jnum  J:74959
Mgi Id  MGI:2159494 Doi  10.1016/s1568-7864(01)00010-6
Citation  van der Horst GT, et al. (2002) UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair (Amst) 1:143-57
abstractText  Cockayne syndrome (CS) is an inherited photosensitive neurodevelopmental disorder caused by a specific defect in the transcription-coupled repair (TCR) sub-pathway of NER. Remarkably, despite their DNA repair deficiency, CS patients do not develop skin cancer. Here, we present a mouse model for CS complementation group A. Like cells from CS-A patients, Csa(-/-) mouse embryonic fibroblasts (MEFs): (i) are ultraviolet (UV)-sensitive; (ii) show normal unscheduled DNA synthesis (indicating that the global genome repair sub-pathway is unaffected); (iii) fail to resume RNA synthesis after UV-exposure and (iv) are unable to remove cyclobutane pyrimidine dimers (CPD) photolesions from the transcribed strand of active genes. CS-A mice exhibit UV-sensitivity and pronounced age-dependent loss of retinal photoreceptor cells but otherwise fail to show the severe developmental and neurological abnormalities of the human syndrome. In contrast to human CS, Csa(-/-) animals develop skin tumors after chronic exposure to UV light, indicating that TCR in mice protects from UV-induced skin cancer development. Strikingly, inactivation of one Xpc allele (encoding a component of the damage recognition complex involved in the global genome repair sub-pathway) in Csa(-/-) mice resulted in a strongly enhanced UV-mediated skin cancer sensitivity, indicating that in a TC repair defective background, the Xpc gene product may be a rate-limiting factor in the removal of UV-induced DNA lesions.`
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression