|  Help  |  About  |  Contact Us

Publication : The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing.

First Author  Appelt J Year  2020
Journal  EBioMedicine Volume  59
Pages  102970 PubMed ID  32853990
Mgi Jnum  J:314397 Mgi Id  MGI:6796191
Doi  10.1016/j.ebiom.2020.102970 Citation  Appelt J, et al. (2020) The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 59:102970
abstractText  BACKGROUND: Impaired fracture healing represents an ongoing clinical challenge, as treatment options remain limited. Calcitonin gene-related peptide (CGRP), a neuropeptide targeted by emerging anti-migraine drugs, is also expressed in sensory nerve fibres innervating bone tissue. METHOD: Bone healing following a femoral osteotomy stabilized with an external fixator was analysed over 21 days in alphaCGRP-deficient and WT mice. Bone regeneration was evaluated by serum analysis, microCT analysis, histomorphometry and genome-wide expression analysis. Bone-marrow-derived osteoblasts and osteoclasts, as well as the CGRP antagonist olcegepant were employed for mechanistic studies. FINDINGS: WT mice with a femoral fracture display increased CGRP serum levels. alphaCGRP mRNA expression after skeletal injury is exclusively induced in callus tissue, but not in other organs. On protein level, CGRP and its receptor, calcitonin receptor-like receptor (CRLR) complexing with RAMP1, are differentially expressed in the callus during bone regeneration. On the other hand, alphaCGRP-deficient mice display profoundly impaired bone regeneration characterised by a striking reduction in the number of bone-forming osteoblasts and a high rate of incomplete callus bridging and non-union. As assessed by genome-wide expression analysis, CGRP induces the expression of specific genes linked to ossification, bone remodeling and adipogenesis. This suggests that CGRP receptor-dependent PPARgamma signaling plays a central role in fracture healing. INTERPRETATION: This study demonstrates an essential role of alphaCGRP in orchestrating callus formation and identifies CGRP receptor agonism as a potential approach to stimulate bone regeneration. Moreover, as novel agents blocking CGRP or its receptor CRLR are currently introduced clinically for the treatment of migraine disorders, their potential negative impact on bone regeneration warrants clinical investigation. FUNDING: This work was funded by grants from the Else-Kroner-Fresenius-Stiftung (EKFS), the Deutsche Forschungsgemeinschaft (DFG), and the Berlin Institute of Health (BIH).
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression