|  Help  |  About  |  Contact Us

Publication : Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells.

First Author  Chen L Year  2007
Journal  Am J Physiol Renal Physiol Volume  292
Issue  1 Pages  F27-37
PubMed ID  16822937 Mgi Jnum  J:118076
Mgi Id  MGI:3698585 Doi  10.1152/ajprenal.00193.2006
Citation  Chen L, et al. (2007) Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells. Am J Physiol Renal Physiol 292(1):F27-37
abstractText  By crossing mice with expression of Cre recombinase under control of the endogenous renin promoter (Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Dev Cell 6: 719-728, 2004) with mice in which exon 1 of the Gnas gene was flanked by loxP sites (Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L, Weinstein LS. Proc Natl Acad Sci USA), we generated animals with preferential and nearly complete excision of Gsalpha in juxtaglomerular granular (JG) cells. Compared with wild-type animals, mice with conditional Gsalpha deficiency had markedly reduced basal levels of renin expression and very low plasma renin concentrations. Furthermore, the acute release responses to furosemide, hydralazine, and isoproterenol were virtually abolished. Consistent with a state of primary renin depletion, Gsalpha-deficient mice had reduced arterial blood pressure, reduced levels of aldosterone, and a low glomerular filtration rate. Renin content and renin secretion of JG cells in primary culture were drastically reduced, and the stimulatory response to the addition of PGE(2) or isoproterenol was eliminated. Unexpectedly, Gsalpha recombination was also observed in the renal medulla, and this was associated with a vasopressin-resistant concentrating defect. Our study shows that Cre recombinase under control of the renin promoter can be used for the excision of floxed targets from JG cells. We conclude that Gsalpha-mediated signal transduction is essential and nonredundant in the control of renin synthesis and release.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression