|  Help  |  About  |  Contact Us

Publication : Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis.

First Author  Ingold I Year  2018
Journal  Cell Volume  172
Issue  3 Pages  409-422.e21
PubMed ID  29290465 Mgi Jnum  J:255340
Mgi Id  MGI:6114953 Doi  10.1016/j.cell.2017.11.048
Citation  Ingold I, et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 172(3):409-422.e21
abstractText  Selenoproteins are rare proteins among all kingdoms of life containing the 21(st) amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4(cys/cys) cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression