|  Help  |  About  |  Contact Us

Publication : Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage.

First Author  Okano K Year  2012
Journal  J Neurochem Volume  121
Issue  1 Pages  146-56
PubMed ID  22220722 Mgi Jnum  J:184334
Mgi Id  MGI:5320730 Doi  10.1111/j.1471-4159.2012.07647.x
Citation  Okano K, et al. (2012) Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage. J Neurochem 121(1):146-56
abstractText  All-trans-retinal and its condensation-products can cause retinal degeneration in a light-dependent manner and contribute to the pathogenesis of human macular diseases such as Stargardt's disease and age-related macular degeneration. Although these toxic retinoid by-products originate from rod and cone photoreceptor cells, the contribution of each cell type to light-induced retinal degeneration is unknown. In this study, the primary objective was to learn whether rods or cones are more susceptible to light-induced, all-trans-retinal-mediated damage. Previously, we reported that mice lacking enzymes that clear all-trans-retinal from the retina, ATP-binding cassette transporter 4 and retinol dehydrogenase 8, manifested light-induced retinal dystrophy. We first examined early-stage age-related macular degeneration patients and found retinal degenerative changes in rod-rich rather than cone-rich regions of the macula. We then evaluated transgenic mice with rod-only and cone-like-only retinas in addition to progenies of such mice inbred with Rdh8(-/-) Abca4(-/-) mice. Of all these strains, Rdh8(-/-) Abca4(-/-) mice with a mixed rod-cone population showed the most severe retinal degeneration under regular cyclic light conditions. Intense light exposure induced acute retinal damage in Rdh8(-/-) Abca4(-/-) and rod-only mice but not cone-like-only mice. These findings suggest that progression of retinal degeneration in Rdh8(-/-) Abca4(-/-) mice is affected by differential vulnerability of rods and cones to light.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression