|  Help  |  About  |  Contact Us

Publication : Differential expression of specific FGF ligands and receptor isoforms during osteogenic differentiation of mouse Adipose-derived Stem Cells (mASCs) recapitulates the in vivo osteogenic pattern.

First Author  Quarto N Year  2008
Journal  Gene Volume  424
Issue  1-2 Pages  130-40
PubMed ID  18718860 Mgi Jnum  J:141025
Mgi Id  MGI:3815259 Doi  10.1016/j.gene.2008.07.029
Citation  Quarto N, et al. (2008) Differential expression of specific FGF ligands and receptor isoforms during osteogenic differentiation of mouse Adipose-derived Stem Cells (mASCs) recapitulates the in vivo osteogenic pattern. Gene 424(1-2):130-40
abstractText  The ability of Adipose-derived Stem Cells (ASCs) to differentiate into various tissues in vitro and in vivo, a function known as 'stem cell plasticity', makes them an appealing cell source for tissue engineering. Our laboratory is particularly focused on the potential role of adipose tissue as a readily available postnatal source of osteoprogenitor. Fibroblast growth factors (FGF) and their receptors (FGFR) are important regulators of osteogenesis. The goal of this study was to elucidate how changes in temporal expression patterns of individual components of the fibroblast growth factor (FGF) signaling axis correlate with osteogenic differentiation of mASCs. Our results indicate that FGF ligand genes, such as Fgf-2, -4, -8, and -18, displayed a differential and dynamic profile during mouse ASC (mASC) osteogenesis. Fgf-2 transcript was down-regulated, while Fgf-18 transcript level was strongly up-regulated. Interestingly, a drift in the ratio of different FGF-2 protein forms, with translation favoring the HMWFGF-2 forms, occurred during osteogenic differentiation, whereas, the expression of LMWFGF-2 form was down-regulated. This finding shares similarity with a previous study suggesting that preferential expression of the HMWFGF-2 forms is associated with a more osteogenic differentiated state of calvarial osteoblast. Moreover, a differential expression of Fgf Receptor 1 and 2 resembling that previously found in in vivo osteogenic study was observed. Thus, mASCs undergoing osteogenesis recapitulate the in vivo osteogenic differentiation expression pattern of FGF ligands and receptors of calvarial mesenchymal cells during their own osteogenic differentiation. Indeed, this observation further validates ASCs as a suitable resource for skeletal tissue engineering.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

4 Bio Entities

Trail: Publication

0 Expression