|  Help  |  About  |  Contact Us

Publication : Stomachs of mice lacking the gastric H,K-ATPase alpha -subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia.

First Author  Spicer Z Year  2000
Journal  J Biol Chem Volume  275
Issue  28 Pages  21555-65
PubMed ID  10764766 Mgi Jnum  J:63470
Mgi Id  MGI:1861043 Doi  10.1074/jbc.M001558200
Citation  Spicer Z, et al. (2000) Stomachs of mice lacking the gastric H,K-ATPase alpha -subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 275(28):21555-65
abstractText  The H,K-ATPase of the gastric parietal cell is the most critical component of the ion transport system mediating acid secretion in the stomach. To study the requirement of this enzyme in the development, maintenance, and function of the gastric mucosa, we used gene targeting to prepare mice lacking the alpha-subunit. Homozygous mutant (Atp4a(-/-)) mice appeared healthy and exhibited normal systemic electrolyte and acid-base status but were achlorhydric and hypergastrinemic. Immunocytochemical, histological, and ultrastructural analyses of Atp4a(-/-) stomachs revealed the presence of chief cells, demonstrating that the lack of acid secretion does not interfere with their differentiation. Parietal cells were also present in normal numbers, and despite the absence of alpha-subunit mRNA and protein, the beta-subunit was expressed. However, Atp4a(-/-) parietal cells had dilated canaliculi and lacked typical canalicular microvilli and tubulovesicles, and subsets of these cells contained abnormal mitochondria and/or massive glycogen stores. Stomachs of adult Atp4a(-/-) mice exhibited metaplasia, which included the presence of ciliated cells. We conclude that ablation of the H,K-ATPase alpha-subunit causes achlorhydria and hypergastrinemia, severe perturbations in the secretory membranes of the parietal cell, and metaplasia of the gastric mucosa; however, the absence of the pump appears not to perturb parietal cell viability or chief cell differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression