|  Help  |  About  |  Contact Us

Publication : Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway.

First Author  Mukai M Year  2009
Journal  Biochemistry Volume  48
Issue  5 Pages  1084-93
PubMed ID  19152315 Mgi Jnum  J:149071
Mgi Id  MGI:3847579 Doi  10.1021/bi802047y
Citation  Mukai M, et al. (2009) Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway. Biochemistry 48(5):1084-93
abstractText  Tubulins undergo unique post-translational modifications, such as tyrosination, polyglutamylation, and polyglycylation. These modifications are performed by members of a protein family, the tubulin tyrosine ligase (TTL)-like (TTLL) family, which is characterized by the presence of a highly conserved TTL domain. We and others have recently identified tubulin polyglutamylases in the TTLL family [Janke, C., et al. (2005) Science 308, 1758-1762; Ikegami, K., et al. (2006) J. Biol. Chem. 281, 30707-30716; van Dijk, J., et al. (2007) Mol. Cell 26, 437-448]. Previously, we identified TTLL7 as a beta-tubulin-selective polyglutamylase. However, there is controversy over whether TTLL7 functions as an initiase, elongase, or both in polyglutamylation. In this report, we investigate the polyglutamylation reaction by TTLL7 by employing a recombinant enzyme and in vitro reaction. Two-dimensional electrophoresis and tandem mass spectrometry showed that TTLL7 performed both the initiation and elongation of polyglutamylation on beta-tubulin. Recombinant TTLL7 performed with a maximal and specific activity to polymerized tubulin at a neutral pH and a lower salt concentration. The initial rate and inhibitor analyses revealed that the mechanism of binding of three substrates, glutamate, ATP, and tubulin, to the enzyme was a random sequential pathway. Our findings provide evidence that mammalian TTLL7 performs both initiation and elongation in the polyglutamylation reaction on beta-tubulin through a random sequential pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression