|  Help  |  About  |  Contact Us

Publication : The lactate dehydrogenase (LDH) isoenzyme spectrum enables optimally controlling T cell glycolysis and differentiation.

First Author  Chen X Year  2023
Journal  Sci Adv Volume  9
Issue  12 Pages  eadd9554
PubMed ID  36961904 Mgi Jnum  J:334936
Mgi Id  MGI:7450448 Doi  10.1126/sciadv.add9554
Citation  Chen X, et al. (2023) The lactate dehydrogenase (LDH) isoenzyme spectrum enables optimally controlling T cell glycolysis and differentiation. Sci Adv 9(12):eadd9554
abstractText  Isoenzyme divergence is a prevalent mechanism governing tissue-specific and developmental stage-specific metabolism in mammals. The lactate dehydrogenase (LDH) isoenzyme spectrum reflects the tissue-specific metabolic status. We found that three tetrameric isoenzymes composed of LDHA and LDHB (LDH-3/4/5) comprise the LDH spectrum in T cells. Genetically deleting LDHA or LDHB altered the isoenzyme spectrum by removing all heterotetramers and leaving T cells with LDH-1 (the homotetramer of LDHB) or LDH-5 (the homotetramer of LDHA), respectively. Accordingly, deleting LDHA suppressed glycolysis, cell proliferation, and differentiation. Unexpectedly, deleting LDHB enhanced glycolysis but suppressed T cell differentiation, indicating that an optimal zone of glycolytic activity is required to maintain cell fitness. Mechanistically, the LDH isoenzyme spectrum imposed by LDHA and LDHB is necessary to optimize glycolysis to maintain a balanced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrogen pool. Our results suggest that the LDH isoenzyme spectrum enables "Goldilocks levels" of glycolytic and redox activity to control T cell differentiation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

30 Bio Entities

Trail: Publication

0 Expression