|  Help  |  About  |  Contact Us

Publication : Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells.

First Author  Schulze J Year  2011
Journal  J Bone Miner Res Volume  26
Issue  4 Pages  704-17
PubMed ID  20939024 Mgi Jnum  J:233120
Mgi Id  MGI:5780800 Doi  10.1002/jbmr.269
Citation  Schulze J, et al. (2011) Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J Bone Miner Res 26(4):704-17
abstractText  Since the hematopoetic system is located within the bone marrow, it is not surprising that recent evidence has demonstrated the existence of molecular interactions between bone and immune cells. While interleukin 1 (IL-1) and IL-18, two cytokines of the IL-1 family, have been shown to regulate differentiation and activity of bone cells, the role of IL-33, another IL-1 family member, has not been addressed yet. Since we observed that the expression of IL-33 increases during osteoblast differentiation, we analyzed its possible influence on bone formation and observed that IL-33 did not affect matrix mineralization but enhanced the expression of Tnfsf11, the gene encoding RANKL. This finding led us to analyze the skeletal phenotype of Il1rl1-deficient mice, which lack the IL-33 receptor ST2. Unexpectedly, these mice displayed normal bone formation but increased bone resorption, thereby resulting in low trabecular bone mass. Since this finding suggested a negative influence of IL-33 on osteoclastogenesis, we next analyzed osteoclast differentiation from bone marrow precursor cells and observed that IL-33 completely abolished the generation of TRACP(+) multinucleated osteoclasts, even in the presence of RANKL and macrophage colony-stimulating factor (M-CSF). Although our molecular studies revealed that IL-33 treatment of bone marrow cells caused a shift toward other hematopoetic lineages, we further observed a direct negative influence of IL-33 on the osteoclastogenic differentiation of RAW264.7 macrophages, where IL-33 repressed the expression of Nfatc1, which encodes one of the key transciption factors of osteoclast differentiation. Taken together, these findings have uncovered a previously unknown function of IL-33 as an inhibitor of bone resorption.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

25 Bio Entities

0 Expression