|  Help  |  About  |  Contact Us

Publication : Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis.

First Author  Liu P Year  2017
Journal  Cell Death Differ Volume  24
Issue  4 Pages  672-682
PubMed ID  28106886 Mgi Jnum  J:258533
Mgi Id  MGI:6142080 Doi  10.1038/cdd.2016.165
Citation  Liu P, et al. (2017) Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ 24(4):672-682
abstractText  During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte-osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

Trail: Publication

0 Expression