|  Help  |  About  |  Contact Us

Publication : The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures.

First Author  Mochizuki T Year  2009
Journal  J Biol Chem Volume  284
Issue  32 Pages  21257-64
PubMed ID  19531473 Mgi Jnum  J:153171
Mgi Id  MGI:4361093 Doi  10.1074/jbc.M109.020206
Citation  Mochizuki T, et al. (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284(32):21257-64
abstractText  Transient receptor potential channels have recently been implicated in physiological functions in a urogenital system. In this study, we investigated the role of transient receptor potential vanilloid 4 (TRPV4) channels in a stretch sensing mechanism in mouse primary urothelial cell cultures. The selective TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) evoked Ca(2+) influx in wild-type (WT) urothelial cells, but not in TRPV4-deficient (TRPV4KO) cells. We established a cell-stretch system to investigate stretch-evoked changes in intracellular Ca(2+) concentration and ATP release. Stretch stimulation evoked intracellular Ca(2+) increases in a stretch speed- and distance-dependent manner in WT and TRPV4KO cells. In TRPV4KO urothelial cells, however, the intracellular Ca(2+) increase in response to stretch stimulation was significantly attenuated compared with that in WT cells. Stretch-evoked Ca(2+) increases in WT urothelium were partially reduced in the presence of ruthenium red, a broad TRP channel blocker, whereas that in TRPV4KO cells did not show such reduction. Potent ATP release occurred following stretch stimulation or 4alpha-PDD administration in WT urothelial cells, which was dramatically suppressed in TRPV4KO cells. Stretch-dependent ATP release was almost completely eliminated in the presence of ruthenium red or in the absence of extracellular Ca(2+). These results suggest that TRPV4 senses distension of the bladder urothelium, which is converted to an ATP signal in the micturition reflex pathway during urine storage.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression