|  Help  |  About  |  Contact Us

Publication : Repression of repulsive guidance molecule C during inflammation is independent of Hfe and involves tumor necrosis factor-alpha.

First Author  Constante M Year  2007
Journal  Am J Pathol Volume  170
Issue  2 Pages  497-504
PubMed ID  17255318 Mgi Jnum  J:117889
Mgi Id  MGI:3697956 Doi  10.2353/ajpath.2007.060437
Citation  Constante M, et al. (2007) Repression of repulsive guidance molecule C during inflammation is independent of Hfe and involves tumor necrosis factor-alpha. Am J Pathol 170(2):497-504
abstractText  Genetic iron overload, or hemochromatosis, can be caused by mutations in HFE, hemojuvelin, and hepcidin genes. Hepcidin, a negative regulator of intestinal iron absorption, is found to be inappropriately low in both patients and in animal models, indicating that proper control of basal hepcidin levels requires both hemojuvelin and HFE. In mice, repulsive guidance molecule c (Rgmc, the hemojuvelin mouse ortholog) and hepcidin levels are transcriptionally regulated during inflammation. Here, we report that basal Rgmc levels in Hfe-deficient mice are normal and that these mice retain the ability to suppress Rgmc expression after lipopolysaccharide (LPS) challenge. Thus, Rgmc regulation by LPS is Hfe-independent. The response of Rgmc to LPS involves signaling through toll-like receptor 4 (Tlr4), because Tlr4-deficient mice do not show altered Rgmc expression after LPS administration. We further show that tumor necrosis factor-alpha, but not interleukin-6, is sufficient to cause Rgmc down-regulation by LPS. These results contrast with previous data demonstrating that hepcidin levels are directly regulated by interleukin-6 but not by tumor necrosis factor-alpha. The regulation of iron-related genes by different cytokines may allow for time-dependent control of iron metabolism changes during inflammation and may be relevant to chronic inflammation, infections, and cancer settings, leading to the development of anemia of chronic disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

13 Bio Entities

Trail: Publication

0 Expression