|  Help  |  About  |  Contact Us

Publication : Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6.

First Author  Strokin M Year  2012
Journal  Hum Mol Genet Volume  21
Issue  12 Pages  2807-14
PubMed ID  22442204 Mgi Jnum  J:183152
Mgi Id  MGI:5317576 Doi  10.1093/hmg/dds108
Citation  Strokin M, et al. (2012) Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 21(12):2807-14
abstractText  Infantile neuroaxonal dystrophy (INAD; OMIM #no. 256600) is an inherited degenerative nervous system disorder characterized by nerve abnormalities in brain, spinal cord and peripheral nerves. About 85% of INAD patients carry mutations in the PLA2G6 gene that encodes for a Ca(2+)-independent phospholipase A(2) (VIA iPLA(2)), but how these mutations lead to disease is unknown. Besides regulating phospholipid homeostasis, VIA iPLA(2) is emerging with additional non-canonical functions, such as modulating store-regulated Ca(2+) entry into cells, and mitochondrial functions. In turn, defective Ca(2+) regulation could contribute to the development of INAD. Here, we studied possible changes in ATP-induced Ca(2+) signaling in astrocytes derived from two mutant strains of mice. The first strain carries a hypomorphic allele of the Pla2g6 that reduces transcript levels to 5-10% of that observed in wild-type mice. The second strain carries a point mutation in Pla2g6 that results in inactive VIA iPLA(2) protein with postulated gain in toxicity. Homozygous mice from both strains develop pathology analogous to that observed in INAD patients. The nucleotide ATP is the most important transmitter inducing Ca(2+) signals in astroglial networks. We demonstrate here a severe disturbance in Ca(2+) responses to ATP in astrocytes derived from both mutant mouse strains. The duration of the Ca(2+) responses in mutant astrocytes was significantly reduced when compared with values observed in control cells. We also show that the reduced Ca(2+) responses are probably due to a reduction in capacitative Ca(2+) entry (2.3-fold). Results suggest that altered Ca(2+) signaling could be a central mechanism in the development of INAD pathology.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression