|  Help  |  About  |  Contact Us

Publication : Modulation of unloading-induced bone loss in mice with altered ERK signaling.

First Author  Sankaran JS Year  2016
Journal  Mamm Genome Volume  27
Issue  1-2 Pages  47-61
PubMed ID  26546009 Mgi Jnum  J:285777
Mgi Id  MGI:6400094 Doi  10.1007/s00335-015-9611-x
Citation  Sankaran JS, et al. (2016) Modulation of unloading-induced bone loss in mice with altered ERK signaling. Mamm Genome 27(1-2):47-61
abstractText  Genetic variations mediate skeletal responsiveness to mechanical unloading, with individual space travelers exhibiting large variations in the extent of bone loss. We previously identified genomic regions harboring several hundred genes that can modulate the magnitude of skeletal adaptation to mechanical unloading. Here, bioinformatic filters aided in shortlisting 30 genes with bone-related and mechanoregulatory roles. The genes CD44, FGF2, NOD2, and Fas, all associated with ERK signaling, were then functionally tested in hindlimb-unloaded (HLU) knockout (KO) mice. Compared to their respective normally ambulating wildtype (WT) controls, all KO strains, except Fas mice, had lower trabecular bone volume, bone volume fraction, and/or trabecular number. For cortical bone and compared to ambulatory WT mice, CD44(-/-) had impaired properties while FGF2(-/-) showed enhanced indices. NOD2(-/-) and Fas(-/-) did not have a cortical phenotype. In all KO and WT groups, HLU resulted in impaired trabecular and cortical indices, primarily due to trabecular tissue loss and mitigation of cortical bone growth. The difference in trabecular separation between HLU and ambulatory controls was significantly greater in CD44(-/-) and NOD2(-/-) mice than in WT mice. In cortical bone, differences in cortical thickness, total pore volume, and cortical porosity between HLU and controls were aggravated in CD44(-/-) mice. In contrast, deletion of NOD2 and Fas genes mitigated the differences in Po.V between HLU and control mice. Together, we narrowed a previous list of QTL-derived candidate genes from over 300 to 30, and showed that CD44, NOD2, and Fas have distinct functions in regulating changes in trabecular and cortical bone indices during unloading.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression