|  Help  |  About  |  Contact Us

Publication : Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor.

First Author  Tsujino N Year  2005
Journal  J Neurosci Volume  25
Issue  32 Pages  7459-69
PubMed ID  16093397 Mgi Jnum  J:101179
Mgi Id  MGI:3603084 Doi  10.1523/JNEUROSCI.1193-05.2005
Citation  Tsujino N, et al. (2005) Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci 25(32):7459-69
abstractText  Orexin A and B are neuropeptides implicated in the regulation of sleep/wakefulness and energy homeostasis. The regulatory mechanism of the activity of orexin neurons is not precisely understood. Using transgenic mice in which orexin neurons specifically express yellow cameleon 2.1, we screened for factors that affect the activity of orexin neurons (a total of 21 peptides and six other factors were examined) and found that a sulfated octapeptide form of cholecystokinin (CCK-8S), neurotensin, oxytocin, and vasopressin activate orexin neurons. The mechanisms that underlie CCK-8S-induced activation of orexin neurons were studied by both calcium imaging and slice patch-clamp recording. CCK-8S induced inward current in the orexin neurons. The CCKA receptor antagonist lorglumide inhibited CCK-8S-induced activation of orexin neurons, whereas the CCKB receptor agonists CCK-4 (a tetrapeptide form of cholecystokinin) and nonsulfated CCK-8 had little effect. The CCK-8S-induced increase in intracellular calcium concentration was eliminated by removing extracellular calcium but not by an addition of thapsigargin. Nifedipine, omega-conotoxin, omega-agatoxin, 4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride, and SNX-482 had little effect, but La3+, Gd3+, and 2-aminoethoxydiphenylborate inhibited CCK-8S-induced calcium influx. Additionally, the CCK-8S-induced inward current was dramatically enhanced in the calcium-free solution and was inhibited by the cation channel blocker SKF96365, suggesting an involvement of extracellular calcium-sensitive cation channels. CCK-8S did not induce an increase in intracellular calcium concentration when membrane potential was clamped at -60 mV, suggesting that the calcium increase is induced by depolarization. The evidence presented here expands our understanding of the regulation of orexin neurons and the physiological role of CCK in the CNS.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression