|  Help  |  About  |  Contact Us

Publication : The Liver Clock Controls Cholesterol Homeostasis through Trib1 Protein-mediated Regulation of PCSK9/Low Density Lipoprotein Receptor (LDLR) Axis.

First Author  Ma D Year  2015
Journal  J Biol Chem Volume  290
Issue  52 Pages  31003-12
PubMed ID  26547624 Mgi Jnum  J:317703
Mgi Id  MGI:6305417 Doi  10.1074/jbc.M115.685982
Citation  Ma D, et al. (2015) The Liver Clock Controls Cholesterol Homeostasis through Trib1 Protein-mediated Regulation of PCSK9/Low Density Lipoprotein Receptor (LDLR) Axis. J Biol Chem 290(52):31003-12
abstractText  Disruption of the body clock has been recognized as a risk factor for cardiovascular disease. How the circadian pacemaker interacts with the genetic factors associated with plasma lipid traits remains poorly understood. Recent genome-wide association studies have identified an expanding list of genetic variants that influence plasma cholesterol and triglyceride levels. Here we analyzed circadian regulation of lipid-associated candidate genes in the liver and identified two distinct groups exhibiting rhythmic and non-rhythmic patterns of expression during light-dark cycles. Liver-specific inactivation of Bmal1 led to elevated plasma LDL/VLDL cholesterol levels as a consequence of the disruption of the PCSK9/LDL receptor regulatory axis. Ablation of the liver clock perturbed diurnal regulation of lipid-associated genes in the liver and markedly reduced the expression of the non-rhythmically expressed gene Trib1. Adenovirus-mediated rescue of Trib1 expression lowered plasma PCSK9 levels, increased LDL receptor protein expression, and restored plasma cholesterol homeostasis in mice lacking a functional liver clock. These results illustrate an unexpected mechanism through which the biological clock regulates cholesterol homeostasis through its regulation of non-rhythmic genes in the liver.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression