|  Help  |  About  |  Contact Us

Publication : Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle.

First Author  Sakamoto K Year  2006
Journal  Am J Physiol Endocrinol Metab Volume  291
Issue  5 Pages  E1031-7
PubMed ID  16803855 Mgi Jnum  J:113860
Mgi Id  MGI:3687772 Doi  10.1152/ajpendo.00204.2006
Citation  Sakamoto K, et al. (2006) Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. Am J Physiol Endocrinol Metab 291(5):E1031-7
abstractText  The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression