|  Help  |  About  |  Contact Us

Publication : RNA sequencing uncovers alterations in corneal endothelial metabolism, pump and barrier functions of Slc4a11 KO mice.

First Author  Ogando DG Year  2022
Journal  Exp Eye Res Volume  214
Pages  108884 PubMed ID  34871568
Mgi Jnum  J:319665 Mgi Id  MGI:6865421
Doi  10.1016/j.exer.2021.108884 Citation  Ogando DG, et al. (2022) RNA sequencing uncovers alterations in corneal endothelial metabolism, pump and barrier functions of Slc4a11 KO mice. Exp Eye Res 214:108884
abstractText  Slc4a11 KO mice show significant corneal edema, altered endothelial morphology, and mitochondrial ROS at an early age without a decrease in endothelial cell density. We examined the differential gene expression profile between wild type (WT) and KO with the goal of finding pathways related to corneal endothelial metabolic, pump and barrier function that can explain the corneal edema. Freshly dissected Corneal Endothelium-Descemet's Membrane (CEDM) and cultured Mouse Corneal Endothelial Cells (MCEC) were obtained from WT and Slc4a11 KO mice. RNA sequencing Ingenuity Pathway Analysis (IPA) predicted activation, inhibition or differential regulation of several pathways. QPCR and Western analysis validated downregulation of Glycolytic enzymes, Mitochondrial complex components and Ion transporters. Functional testing revealed decreases in endothelial lactate production, Extracellular Acidification Rate (ECAR), glutaminolysis, and Oxygen Consumption Rate (OCR) of KO CEDM in the presence of Glutamine (Gln) that was not compensated by fatty acid oxidation. Stromal lactate was significantly elevated in KO along with decreased expression of MCT1 and MCT4 lactate transporters in endothelial cells. ATP levels were 2x higher in KO CEDM, concomitant with a 3-fold decrease in Na-K-ATPase activity and reduced basolateral membrane localization. Genes for cholesterol biosynthesis, glutathione metabolism and tight and adherens junctions were elevated. Alteration of tight junction structure and cortical cytoskeleton is evident in KO corneal endothelium with a significant increase in trans-endothelial fluorescein permeability. We conclude that Slc4a11 KO induces a coordinated decrease in glycolysis, glutaminolysis, lactate transport and Na-K-ATPase activity. These changes together with an altered barrier function cause an accumulation of stromal lactate in Slc4a11 KO mice leading to chronic corneal edema.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

3 Bio Entities

Trail: Publication

0 Expression