|  Help  |  About  |  Contact Us

Publication : Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes.

First Author  Zhang D Year  2017
Journal  Diabetes Volume  66
Issue  1 Pages  45-57
PubMed ID  27999107 Mgi Jnum  J:249496
Mgi Id  MGI:5923490 Doi  10.2337/db16-0761
Citation  Zhang D, et al. (2017) Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes. Diabetes 66(1):45-57
abstractText  Heparanase, a protein with enzymatic and nonenzymatic properties, contributes toward disease progression and prevention. In the current study, a fortuitous observation in transgenic mice globally overexpressing heparanase (hep-tg) was the discovery of improved glucose homeostasis. We examined the mechanisms that contribute toward this improved glucose metabolism. Heparanase overexpression was associated with enhanced glucose-stimulated insulin secretion and hyperglucagonemia, in addition to changes in islet composition and structure. Strikingly, the pancreatic islet transcriptome was greatly altered in hep-tg mice, with >2,000 genes differentially expressed versus control. The upregulated genes were enriched for diverse functions including cell death regulation, extracellular matrix component synthesis, and pancreatic hormone production. The downregulated genes were tightly linked to regulation of the cell cycle. In response to multiple low-dose streptozotocin (STZ), hep-tg animals developed less severe hyperglycemia compared with wild-type, an effect likely related to their beta-cells being more functionally efficient. In animals given a single high dose of STZ causing severe and rapid development of hyperglycemia related to the catastrophic loss of insulin, hep-tg mice continued to have significantly lower blood glucose. In these mice, protective pathways were uncovered for managing hyperglycemia and include augmentation of fibroblast growth factor 21 and glucagon-like peptide 1. This study uncovers the opportunity to use properties of heparanase in management of diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression