|  Help  |  About  |  Contact Us

Publication : Attenuation of ephrinB2 reverse signaling decreases vascularized area and preretinal vascular tuft formation in the murine model of oxygen-induced retinopathy.

First Author  Taylor AC Year  2012
Journal  Invest Ophthalmol Vis Sci Volume  53
Issue  9 Pages  5462-70
PubMed ID  22789927 Mgi Jnum  J:213971
Mgi Id  MGI:5586953 Doi  10.1167/iovs.11-8599
Citation  Taylor AC, et al. (2012) Attenuation of ephrinB2 reverse signaling decreases vascularized area and preretinal vascular tuft formation in the murine model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 53(9):5462-70
abstractText  PURPOSE: EphB4 and ephrinB2 are known key regulators of retinal vascular development, but due to their capacity for bidirectional signaling, delineation of their individual roles in this process remains unclear. To better dissect out individual contributions, a model of proliferative retinopathy in mice with attenuated ephrinB2 reverse signaling was studied. It was hypothesized that endothelial ephrinB2 reverse signaling regulates hypoxia-induced capillary sprouting, as well as the pathologic formation of neovascular tufts in postnatal retinal microvascular networks. METHODS: Genetically manipulated mice with attenuated ephrinB2 reverse signaling (ephrinB2(lacZ/+)), along with wild-type (WT) controls, were exposed to oxygen-induced retinopathy (OIR), a postnatal model of proliferative retinopathy. At peak disease (postnatal day 18), microvascular networks were analyzed to examine intraretinal revascularization, capillary sprouting, and pathologic neovascularization responses. EphB4 and phosphorylated ephrinB protein expression patterns along retinal microvessels were also assessed. RESULTS: EphrinB2(lacZ/+) mice exhibited reduced hypoxia-induced revascularization (P </= 0.04) and reduced formation of neovascular tufts (P < 0.001), as compared with WT controls. Corresponding to the observed inhibition of retinal angiogenesis, ephrinB2(lacZ/+) retinas displayed an increased number of blind-ended capillary sprout tips (P < 0.02) and endothelial filopodial processes (P = 0.001). In WT and ephrinB2(lacZ/+) OIR-exposed retinas, ephrinB was confined to endothelial cells, with expression detected along angiogenic vascular processes including neovascular tufts and blind-ended capillary sprouts. CONCLUSIONS: EphrinB2 reverse signaling is a regulator of key processes during retinal vascularization and controls pathologic retinal angiogenesis through direct effects on capillary sprouting and endothelial filopodia formation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression