|  Help  |  About  |  Contact Us

Publication : Regulation of osteoblast-specific factor-1 (OSF-1) mRNA expression by dual promoters as revealed by RT-PCR.

First Author  Sato M Year  1997
Journal  Biochem Biophys Res Commun Volume  238
Issue  3 Pages  831-7
PubMed ID  9325176 Mgi Jnum  J:43916
Mgi Id  MGI:1099138 Doi  10.1006/bbrc.1997.7403
Citation  Sato M, et al. (1997) Regulation of osteoblast-specific factor-1 (OSF-1) mRNA expression by dual promoters as revealed by RT-PCR. Biochem Biophys Res Commun 238(3):831-7
abstractText  OSF-1 (osteoblast-specific factor-1), which is also referred to as p18, HBBM, HB-GAM, HBGF-8, HARP, HBNF, and pleiotrophin, is a 121-amino acid polypeptide that can induce neurite outgrowth in vitro and is highly expressed in several tissues during fetal development but exhibits expression restricted to brain and bone tissues in adults. We have reported the genomic structure of mouse OSF-1 gene, in which the open reading frame spans four exons and at least two additional 5'-UTR exons (upstream exon U2 and downstream exon U1) exist. From analysis of isolated cDNAs, two types of cDNAs were identified: one has a sequence for U1 and U2 and the other has a sequence for an intron (present between U1 and U2) and U1. This suggests that the OSF-1 gene utilizes two alternative promoters, a distal and a proximal promoter, designated promoters II and I, respectively, for the translation initiation site (ATG). Promoter II is thought to exist upstream of the intron, while promoter I is present in the intron. RT-PCR was employed to examine which OSF-1 promoters are used during development and in various cell lines. In adult mice (aged 2 months), usage of promoter I was predominant, and OSF-1 mRNAs were expressed in many organs including brain and bone. At one fetal stage (E-19), promoter I was active in the major organs including brain, liver, kidney, and intestine, while promoter II was active only in the brain. In the cell lines examined, usage of promoter I was frequent, while promoter II was active only in a few cell lines such as MC3T3-E1 (cultured for 7 days) and C3H10T1/2. These findings suggest that OSF-1 may play fundamental roles in differentiation, growth and maintenance of adult organs as well as in embryogenesis, and indicate that the expression of OSF-1 is regulated, at least in part, by the usage of different promoters in the mouse.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

69 Expression

Trail: Publication