|  Help  |  About  |  Contact Us

Publication : Defensin-related peptide 1 (Defr1) is allelic to Defb8 and chemoattracts immature DC and CD4+ T cells independently of CCR6.

First Author  Taylor K Year  2009
Journal  Eur J Immunol Volume  39
Issue  5 Pages  1353-60
PubMed ID  19404978 Mgi Jnum  J:148089
Mgi Id  MGI:3843531 Doi  10.1002/eji.200838566
Citation  Taylor K, et al. (2009) Defensin-related peptide 1 (Defr1) is allelic to Defb8 and chemoattracts immature DC and CD4+ T cells independently of CCR6. Eur J Immunol 39(5):1353-60
abstractText  Beta-defensins comprise a family of cationic, antimicrobial and chemoattractant peptides. The six cysteine canonical motif is retained throughout evolution and the disulphide connectivities stabilise the conserved monomer structure. A murine beta-defensin gene (Defr1) present in the main defensin cluster of C57B1/6 mice, encodes a peptide with only five of the canonical six cysteine residues. In other inbred strains of mice, the allele encodes Defb8, which has the six cysteine motif. We show here that in common with six cysteine beta-defensins, defensin-related peptide 1 (Defr1) displays chemoattractant activity for CD4(+) T cells and immature DC (iDC), but not mature DC cells or neutrophils. Murine Defb2 replicates this pattern of attraction. Defb8 is also able to attract iDC but not mature DC. Synthetic analogues of Defr1 with the six cysteines restored (Defr1 Y5C) or with only a single cysteine (Defr1-1c(V)) chemoattract CD4(+) T cells with reduced activity, but do not chemoattract DC. Beta-defensins have previously been shown to attract iDC through CC receptor 6 (CCR6) but neither Defr1 or its related peptides nor Defb8, chemoattract cells overexpressing CCR6. Thus, we demonstrate that the canonical six cysteines of beta-defensins are not required for the chemoattractant activity of Defr1 and that neither Defr1 nor the six cysteine polymorphic variant allele Defb8, act through CCR6.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression