|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 5 out of 5 for Ace2

Category restricted to ProteinDomain (x)

0.019s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Domain
Description: This domain is found in collectrin, a single-pass transmembrane protein that regulates SNARE complex function []. This domain can be also found in the C-terminal region of human angiotensin-converting enzyme 2, ACE2 [].
Protein Domain
Type: Domain
Description: The CoV Spike (S) protein is an envelope glycoprotein that plays the most important role in viral attachment, fusion, and entry into host cells, and serves as a major target for the development of neutralizing antibodies, inhibitors of viral entry, and vaccines. It is synthesised as a precursor protein that is cleaved into an N-terminal S1 subunit (~700 amino acids) and a C-terminal S2 subunit (~600 amino acids) that mediates attachment and membrane fusion, respectively. Three S1/S2 heterodimers assemble to form a trimer spike protruding from the viral envelope. The S1 subunit contains a receptor-binding domain (RBD), while the S2 subunit contains a hydrophobic fusion peptide and two heptad repeat regions. S1 contains two structurally independent domains, the N-terminal domain (NTD) and the C-terminal domain (C-domain). Depending on the virus, either the NTD or the C-domain can serve as the receptor-binding domain (RBD). Most CoVs, including SARS-CoV-2, SARS-CoV, and MERS-CoV use the C-domain to bind their receptors. However, CoV such as mouse hepatitis virus (MHV) uses the NTD to bind its receptor, mouse carcinoembryonic antigen related cell adhesion molecule 1a (mCEACAM1a). The S1 NTD contributes to the Spike trimer interface [, , , , ].This entry represents the RBD domain of Spike protein S1 subunit from SARS-CoV-2, which binds the extracellular peptidase domain of angiotensin-converting enzyme 2 (ACE2). It has been shown that the receptor binding induces the dissociation of the S1 with ACE2, prompting the S2 to transit from a metastable pre-fusion to a more-stable post-fusion state that is essential for membrane fusion [, , , ]. Recent structures revealed that only a single RBD is necessary for ACE2 binding and it is not yet clear if protrusion of the RBD from the S protein trimer is necessary for binding to ACE2 or the interconversion of the RBD between closed and open states represents an intrinsic property of the S protein []. During the pandemic, many amino acid substitutions have been reported in the S1 segment, being D614G the most commonly observed amino acid change from the reference sequence. Although it was estimated to be slightly destabilizing, it was hypothesized that it increases virus infectivity by increasing the total amount of S protein incorporated into virions. The most prevalent RBD substitution in the RBD is the T478I, located in a portion of a loop that contacts ACE2. However, most substitutions in the interface with ACE2 appear to be neutral or destabilizing, with none improving binding affinity [].SARS-CoV-2 RBD has a core formed by a twisted five-stranded antiparallel β-sheet (β1-7) with short helices and loops connecting them. Between the β4 and β7 strands in the core, there is an extended insertion, the receptor-binding motif (RBM), containing the short β5 and β6 strands, α4 and α5 helices and loops, which contains most of the contacting residues for binding to ACE2. There are nine cysteine residues in the RBD, eight of which form four pairs of disulfide bonds. Among these four pairs, three are in the core which help to stabilise the β-sheet structure, while the remaining pair connects the loops in the distal end of the RBM [].
Protein Domain
Type: Family
Description: Angiotensinogen is a component of the renin-angiotensin system (RAS), a hormone system that regulates blood pressure and fluid balance. It is also known as the renin substrate, and is a non-inhibitory member of the serpin family of proteinase inhibitors (MEROPS inhibitor family I4, clan ID, MEROPS identifier I04.953).Angiotensinogen is catalytically cleaved by renin to produce angiotensin I in response to lowered blood pressure. Angiotensin converting enzyme (ACE), subsequently removes a dipeptide to produce angiotensin II, the physiologically active peptide, which functions in the regulation of volume and mineral balance of body fluids [, ]. Angiotensin I and angiotensin II can be further processed to generate angiotensin III, which stimulates aldosterone release [], and angiotensin IV. Angiotensin 1-9 is cleaved from angiotensin-1 by ACE2 []and can be further processed by ACE to produce angiotensin 1-7, angiotensin 1-5 and angiotensin 1-4 [, ].Angiotensinogen is synthesised in the liver and secreted in plasma [, , , ]. Angiotensinogen appears to be associated with a predisposition to essential hypertension; it is also associated with pregnancy-induced hypertension (pih) (preeclampsia), a heterogeneous disorder that complicates 5-7% of all pregnancies and remains a leading cause of maternal, foetal and neonatal morbidity and mortality [].The entry represents the full precursor sequence of angiotensinogen.
Protein Domain
Type: Domain
Description: Angiotensinogen is a component of the renin-angiotensin system (RAS), a hormone system that regulates blood pressure and fluid balance. It is also known as the renin substrate, and is a non-inhibitory member of the serpin family of proteinase inhibitors (MEROPS inhibitor family I4, clan ID, MEROPS identifier I04.953).Angiotensinogen is catalytically cleaved by renin to produce angiotensin I in response to lowered blood pressure. Angiotensin converting enzyme (ACE), subsequently removes a dipeptide to produce angiotensin II, the physiologically active peptide, which functions in the regulation of volume and mineral balance of body fluids [, ]. Angiotensin I and angiotensin II can be further processed to generate angiotensin III, which stimulates aldosterone release [], and angiotensin IV. Angiotensin 1-9 is cleaved from angiotensin-1 by ACE2 []and can be further processed by ACE to produce angiotensin 1-7, angiotensin 1-5 and angiotensin 1-4 [, ].Angiotensinogen is synthesised in the liver and secreted in plasma [, , , ]. Angiotensinogen appears to be associated with a predisposition to essential hypertension; it is also associated with pregnancy-induced hypertension (pih) (preeclampsia), a heterogeneous disorder that complicates 5-7% of all pregnancies and remains a leading cause of maternal, foetal and neonatal morbidity and mortality [].This entry represents the serpin domain of angiotensinogen.
Protein Domain
Type: Family
Description: This group of metallopeptidases belong to the MEROPS peptidase family M2 (clan MA(E)). The protein fold of the peptidase domain for members of this family resembles that of thermolysin, the type example for clan MA. The catalytic residues and zinc ligands have been identified, the zinc ion being ligated to two His residues within the motif HEXXH, showing that the enzyme belongs to the glu-zincin sub-group of metalloproteases [].Peptidyl-dipeptidase A (angiotensin-converting enzyme or ACE, ) is a mammalian enzyme responsible for cleavage of dipeptides from the C-termini of proteins, notably converting decapeptide angiotensin I to the octapeptide angiotensin II []. The enzyme exists in two differentially transcribed forms, the most common of which is from lung endothelium; this contains two homologous domains that have arisen by gene duplication []. The testis-specific form contains only the C-terminal domain, arising from a duplicated promoter region present in intron 12 of the gene []. Both enzymatic forms are membrane proteins that are anchored by means of a C-terminal transmembrane domain. Both domains of the endothelial enzyme are active, but have differing kinetic constants [, ]. ACE is well-known as a key part of the renin-angiotensin system that regulates blood pressure and ACE inhibitors are important for the treatment of hypertension [, ].An ACE homologue, ACE2 (MEROPS identifier M02.006), has been identified in humans that differs from ACE; it preferentially removes carboxy-terminal hydrophobic or basic amino acids and appears to be important in cardiac function [, ]. ACE3 is a non-peptidase homologue included in this entry which lacks Glu378 in the HEXXH motif.A number of insect enzymes have been shown to be similar to peptidyl-dipeptidase A, these containing a single catalytic domain [, ].