|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 7 out of 7 for Vps13a

Category restricted to ProteinDomain (x)

0.016s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Domain
Description: This entry represents a domain reminiscent of a DH domain (DH-Like domain) found adjacent the C-terminal PH-like domain of VPS13 proteins [, , , ]. DHL-PH domains has been identified as the mitochondria-binding region of VPS13A and the lipid droplet-binding region of both proteins. These two domains contain a region of high similarity to ATG2, which also binds lipid droplets [, ].VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Family
Description: Vacuolar protein sorting-associated protein 13 (VPS13) is involved in the delivery of proteins to the vacuole in vegetatively growing yeast []and also regulates membrane morphogenesis during sporulation [, ]. It mediates the transfer of lipids between membranes at organelle contact sites []and it is involved in mitochondrial lipid homeostasis [, ]. In humans, the hereditary disorders chorea acanthocytosis and Cohen syndrome are caused by mutations in members ofthis family that are orthologues of yeast VPS13 (VPS13A and VPS13B respectively). Human VPS13A binds phospholipids and is required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria [, , ]. It is also required for efficient lysosomal protein degradation [].
Protein Domain
Type: Family
Description: This family is represented by the multipass membrane protein XK, which may be involved in sodium-dependent transport of neutral amino acids or oligopeptides. It forms a heterodimer with Kell. In humans, Kell is an 93kDa type II membrane glycoprotein with endothelin-3-converting enzyme activity that is linked by a single disulphide bond to XK, that spans the membrane ten times. An absence of XK leads to clinical symptoms termed the McLeod syndrome , an X-linked multi-system disorder characterised by late onset abnormalities in the neuromuscular and hematopoietic systems [, ]. It has been shown that XK recruits the lipid transfer protein VPS13A from lipid droplets to the endoplasmic reticulum (ER) membrane and dysregulation of a VPS13A-XK complex is the common basis for Chorea-Acanthocytosis and McLeod Syndrome []. The human and mouse Xk-related (Xkr) families consist of nine and eight members, respectively, and mutations or variations in the gene of Xkr members are associated to human diseases. Xkr8 and other members of the family promote phosphatidylserine exposure in apoptotic cells [, , ].
Protein Domain
Type: Domain
Description: This domain lies towards the N terminus, just downstream from . This domain is involved in lipid binding and transport [, , ]. This domain specifically interacts with phosphatidic acid and phosphorylated forms of phosphatidyl inositol [].VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This entry represents the repeating region of VPS13. This repeating region shares a common core element that includes a well-conserved P-X4-P-X13-17-G sequence [, ]. This region contains a FFAT motif which mediates VAMP binding and tethering of the ER.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This is the N-terminal chorein domain of VPS13 and ATG2 proteins, which is highly conserved. ATG2 proteins are involved in autophagosome assembly, playing a key role in nonvesicular lipid transfer [, , , ]. This domain has a scoop shape whose concave surface is lined by hydrophobic residues which bind glycerophospholipids.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].
Protein Domain
Type: Domain
Description: This entry represents the VPS13 adaptor binding (VAB) domain, previously known as SHR-BD, found in VPS13 []. These proteins interact with membrane-specific adaptor proteins such as Ypt35, Spo71 and the mitochondrial membrane protein Mcp1, to be recruited to different membranes. This domain interacts with Ypt35 which recruits VPS13 to endosomal and vacuolar membranes, and with Mcp1 to target VPS13 at mitochondria []. In plants, this domain is found to be the region which interacts with SHR or the SHORT-ROOT transcription factor, a regulator of root-growth and asymmetric cell division that separates ground tissue into endodermis and cortex. The plant protein containing the SHR-BD is named SHRUBBY or SHBY () [].This domain likely adopts an elongated structure consisting of β-sheets. It has been described as a β-propeller/WD40-like structure [, ], however, based on structural models, it does not seem to have that 3D arrangement.VPS13 proteins have been implicated in processes including vesicle fusion, autophagy, and actin regulation. They bind phospholipids and act as channels that mediate the transfer of lipids between membranes at organelle contact sites [, , ]. It has been proposed that members of this entry have the capacity to bind and likely transfer tens of glycerolipids at once. Yeast VPS13 acts at multiple cellular sites, namely the interface between mitochondria and the vacuole, on endosomes, on the nuclear-vacuole junction and the vacuole, depending on the carbon source and metabolic state. Most evidence showed that mammalian VPS13A, VPS13C and VPS13D localize at contacts between the ER and other organelles, i.e. VPS13A and VPS13D bridge the ER to mitochondria, VPS13C bridges the ER to late endosomes and lysosomes and VPS13B may localize to endosome-endosome contacts [, , ]. Mutations in human VPS13 proteins (VPS13A-D) cause different diseases such as Chorea-acanthocytosis, Cohen syndrome, Parkinson's disease, and spastic ataxia, respectively which suggests they have different functions [, ].