|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 5 out of 5 for Gatb

Category restricted to ProteinDomain (x)

0.018s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Homologous_superfamily
Description: This domain superfamily is found in GatB and proteins related to bacterial Yqey. The domain is about 140 amino acid residues long. This domain is found at the C terminus of GatB which transamidates Glu-tRNA to Gln-tRNA. The function of this domain is uncertain. It does however suggest that Yqey and its relatives have a role in tRNA metabolism.
Protein Domain
Type: Domain
Description: The GatB domain, the function of which is uncertain, is associated with aspartyl/glutamyl amidotransferase subunit B and glutamyl amidotransferase subunit E. These are involved in the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl-tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp-tRNA(Asn) or phospho-Glu-tRNA(Gln).
Protein Domain
Type: Homologous_superfamily
Description: Glutamyl-tRNA(Gln) amidotransferase (Gat; ) provides a means of producing correctly charged Gln-tRNA(Gln) through the transamidation of mis-acylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase [, ]. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). The enzyme is composed of three subunits: A (an amidase), B and C. It also exists in eukaryotes as a protein targeted to the mitochondria.The heterotrimer GatABC is involved in converting Glu to Gln and/or Asp to Asn, when the amino acid is attached to the appropriate tRNA. In Lactobacillus, GatABC is responsible for producing tRNA(Gln). In Archaea, GatABC is responsible for producing tRNA(Asn), while GatDE is responsible for producing tRNA(Gln). In lineages that include Thermus, Chlamydia, or Acidithiobacillus, the GatABC complex catalyses both tRNA(Gln) and tRNA(Asn).This entry represents the first α-helical subdomain found in the C-terminal structural domain of GatB and GatE subunits.
Protein Domain
Type: Homologous_superfamily
Description: Glutamyl-tRNA(Gln) amidotransferase (Gat; ) provides a means of producing correctly charged Gln-tRNA(Gln) through the transamidation of mis-acylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase [, ]. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu-tRNA(Gln). The enzyme is composed of three subunits: A (an amidase), B and C. It also exists in eukaryotes as a protein targeted to the mitochondria.The heterotrimer GatABC is involved in converting Glu to Gln and/or Asp to Asn, when the amino acid is attached to the appropriate tRNA. In Lactobacillus, GatABC is responsible for producing tRNA(Gln). In Archaea, GatABC is responsible for producing tRNA(Asn), while GatDE is responsible for producing tRNA(Gln). In lineages that include Thermus, Chlamydia, or Acidithiobacillus, the GatABC complex catalyses both tRNA(Gln) and tRNA(Asn).This entry represents the extreme C-terminal structural domain of GatB and GatE subunits. It forms a predominantly α-helical structure.
Protein Domain
Type: Family
Description: Amidase signature (AS) enzymes are a large group of hydrolytic enzymes that contain a conserved stretch of approximately 130 amino acids known as the AS sequence. They are widespread, being found in both prokaryotes and eukaryotes. AS enzymes catalyse the hydrolysis of amide bonds (CO-NH2), although the family has diverged widely with regard to substrate specificity and function. Nonetheless, these enzymes maintain a core alpha/beta/alpha structure, where the topologies of the N- and C-terminal halves are similar. AS enzymes characteristically have a highly conserved C-terminal region rich in serine and glycine residues, but devoid of aspartic acid and histidine residues, therefore they differ from classical serine hydrolases. These enzymes posses a unique, highly conserved Ser-Ser-Lys catalytic triad used for amide hydrolysis, although the catalytic mechanism for acyl-enzyme intermediate formation can differ between enzymes [].Examples of AS enzymes include:Peptide amidase (Pam) [], which catalyses the hydrolysis of the C-terminal amide bond of peptides.Fatty acid amide hydrolases [], which hydrolyse fatty acid amid substrates (e.g. cannabinoid anandamide and sleep-inducing oleamide), thereby controlling the level and duration of signalling induced by this diverse class of lipid transmitters.Malonamidase E2 [], which catalyses the hydrolysis of malonamate into malonate and ammonia, and which is involved in the transport of fixed nitrogen from bacteroids to plant cells in symbiotic nitrogen metabolism.Subunit A of Glu-tRNA(Gln) amidotransferase [],a heterotrimeric enzyme that catalyses the formation of Gln-tRNA(Gln) by the transamidation of misacylated Glu-tRNA(Gln) via amidolysis of glutamine.In many species, Gln-tRNA ligase is missing. tRNA(Gln) is misacylated with Glu after which a heterotrimeric amidotransferase converts Glu to Gln. This group represents the amidase chain of the heterotrimer, encoded by the gatA gene called glutamyl-tRNA(Gln) amidotransferase, A subunit . This enzyme functions as an alternative to a direct Gln-tRNA synthetase (Gln-tRNA ligase) in mitochondria, chloroplasts, Gram-positive bacteria, cyanobacteria, and the Archaea. The archaea have an Asp-tRNA(Asn) amidotransferase instead of an Asp-tRNA ligase. In the archaea, a paralog of gatB is found, here designated gatB_rel, that is a candidate B subunit of the Asp-tRNA(Asn) amidotransferase. The gatA-encoded subunit may be shared by gatB and gatB_rel.