This superfamily represents an α-helical domain found in glutathione synthetase () (GSS), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system.
This entry represents glutathione synthetase () (GSH-S), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system [].
This superfamily represents the N-terminal domain found in eukaryotic glutathione synthetase () (GSS), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system. The N-terminal domain has a 2-layer alpha/beta structure.
This entry represents the substrate-binding domain of glutathione synthetase () (GSS), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system. The substrate-binding domain has a 3-layer α/β/α structure [].
This superfamily represents the C-terminal domain found in eukaryotic glutathione synthetase () (GSS), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system.This domain has a 2-layer alpha/beta structure.
This superfamily represents the substrate-binding domain of glutathione synthetase () (GSS), a homodimeric enzyme that catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine to phosphate and glutathione in the presence of ATP. This is the second step in glutathione biosynthesis, the first step being catalysed by gamma-glutamylcysteine synthetase []. In humans, defects in GSS are inherited in an autosomal recessive way and are the cause of severe metabolic acidosis, 5-oxoprolinuria, and increased rate of haemolysis and defective function of the central nervous system. The substrate-binding domain has a 3-layer alpha/beta/alpha structure [].