Cytoplasmic protein NCK2 (NCK2) is a non-enzymatic adaptor protein composed of three SH3 (Src homology 3) domains and a C-terminal SH2 domain. There are two vertebrate NCK proteins, NCK1 and NCK2. NCK2 mediates Slit-induced cortical neurite outgrowth []. NCK2 interacts with focal adhesion kinase (FAK) and this interaction suggests a role of NCK2 in the modulation of cell motility []. It also interacts with DOCK1 [], LIMS1 [].
This entry represent the first SH3 domain of Nck2. It binds the PxxDY sequence in the CD3e cytoplasmic tail; this binding inhibits phosphorylation by Src kinases, resulting in the downregulation of TCR surface expression []. Nck2 (also known as Grb4) is a member of the Nck family. It plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling []. It binds neuronal signaling proteins such as ephrinB []. Cytoplasmic proteins Nck are non-enzymatic adaptor proteins composed of three SH3 (Src homology 3) domains and a C-terminal SH2 domain []. They regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates []. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics []. They associate with tyrosine-phosphorylated growth factor receptors or their cellular substrates [, ]. There are two vertebrate Nck proteins, Nck1 and Nck2.
This entry represent the second SH3 domain of Nck2. The second SH3 domain of Nck appears to prefer ligands containing the APxxPxR motif []. Nck2 (also known as Grb4) is a member of the Nck family. It plays a crucial role in connecting signaling pathways of tyrosine kinase receptors and important effectors in actin dynamics and cytoskeletal remodeling []. It binds neuronal signaling proteins such as ephrinB []. Cytoplasmic proteins Nck are non-enzymatic adaptor proteins composed of three SH3 (Src homology 3) domains and a C-terminal SH2 domain []. They regulate actin cytoskeleton dynamics by linking proline-rich effector molecules to protein tyrosine kinases and phosphorylated signaling intermediates []. They function downstream of the PDGFbeta receptor and are involved in Rho GTPase signaling and actin dynamics []. They associate with tyrosine-phosphorylated growth factor receptors or their cellular substrates [, ]. There are two vertebrate Nck proteins, Nck1 and Nck2.