Pyridoxal phosphate is the active form of vitamin B6 (pyridoxine or pyridoxal). Pyridoxal 5'-phosphate (PLP) is a versatile catalyst, acting as a coenzyme in a multitude of reactions, including decarboxylation, deamination and transamination [, , ]. PLP-dependent enzymes are primarily involved in the biosynthesis of amino acids and amino acid-derived metabolites, but they are also found in the biosynthetic pathways of amino sugars and in the synthesis or catabolism of neurotransmitters; pyridoxal phosphate can also inhibit DNA polymerases and several steroid receptors []. Inadequate levels of pyridoxal phosphate in the brain can cause neurological dysfunction, particularly epilepsy [].PLP enzymes exist in their resting state as a Schiff base, the aldehyde group of PLP forming a linkage with the ε-amino group of an active site lysine residue on the enzyme. The α-amino group of the substrate displaces the lysine ε-amino group, in the process forming a new aldimine with the substrate. This aldimine is the common central intermediate for all PLP-catalysed reactions, enzymatic and non-enzymatic [].This entry represents pyridoxal kinase PdxK (), which acts as a pyridoxine (PN)/ pyridoxal (PL)/ pyridoxamine (PM) kinase. PdxK is required for the synthesis of pyridoxal-5-phosphate from vitamin B6 []. Its structure has been revealed [].
Pyridoxal phosphate is the active form of vitamin B6 (pyridoxine or pyridoxal). Pyridoxal 5'-phosphate (PLP) is a versatile catalyst, acting as a coenzyme in a multitude of reactions, including decarboxylation, deamination and transamination [, , ]. PLP-dependent enzymes are primarily involved in the biosynthesis of amino acids and amino acid-derived metabolites, but they are also found in the biosynthetic pathways of amino sugars and in the synthesis or catabolism of neurotransmitters; pyridoxal phosphate can also inhibit DNA polymerases and several steroid receptors []. Inadequate levels of pyridoxal phosphate in the brain can cause neurological dysfunction, particularly epilepsy [].PLP enzymes exist in their resting state as a Schiff base, the aldehyde group of PLP forming a linkage with the ε-amino group of an active site lysine residue on the enzyme. The α-amino group of the substrate displaces the lysine ε-amino group, in the process forming a new aldimine with the substrate. This aldimine is the common central intermediate for all PLP-catalysed reactions, enzymatic and non-enzymatic [].This entry represents pyridoxal kinase (), which is required for the synthesis of pyridoxal-5-phosphate from vitamin B6, and catalyses the conversion of pyridoxal to pyridoxal 5'-phosphate in the presence of ATP. Escherichia coli has an enzyme PdxK that acts in vitroas a pyridoxine/pyridoxal/pyridoxamine kinase,but mutants lacking PdxK activity retain a specific pyridoxamine kinase, PdxY []. PdxY acts in the salvage pathway of pyridoxal 5'-phosphate biosynthesis. Mammalian forms of pyridoxal kinase are more similar to PdxY than to PdxK.
Pyridoxal phosphate is the active form of vitamin B6 (pyridoxine or pyridoxal). Pyridoxal 5'-phosphate (PLP) is a versatile catalyst, acting as a coenzyme in a multitude of reactions, including decarboxylation, deamination and transamination [, , ]. PLP-dependent enzymes are primarily involved in the biosynthesis of amino acids and amino acid-derived metabolites, but they are also found in the biosynthetic pathways of amino sugars and in the synthesis or catabolism of neurotransmitters; pyridoxal phosphate can also inhibit DNA polymerases and several steroid receptors []. Inadequate levels of pyridoxal phosphate in the brain can cause neurological dysfunction, particularly epilepsy [].PLP enzymes exist in their resting state as a Schiff base, the aldehyde group of PLP forming a linkage with the ε-amino group of an active site lysine residue on the enzyme. The α-amino group of the substrate displaces the lysine ε-amino group, in the process forming a new aldimine with the substrate. This aldimine is the common central intermediate for all PLP-catalysed reactions, enzymatic and non-enzymatic [].Pyridoxal kinase PdxY (Escherichia coli pyridoxal kinase 2 or ePL kinase 2) phosphorylates B6 vitamers. PdxY acts in the salvage pathway of pyridoxal 5'-phosphate biosynthesis []. It has been shown to have some pyridoxal (PL) kinase activity, but at a greatly reduced level compared tothe enzyme expressed by the pdxK gene (ePL kinase 1) [].