|  Help  |  About  |  Contact Us

Search our database by keyword

- or -

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 1 to 8 out of 8 for Rab3c

Category restricted to ProteinDomain (x)

0.008s

Categories

Category: ProteinDomain
Type Details Score
Protein Domain
Type: Family
Description: MAP kinase-activating death domain protein (MADD) regulates cell proliferation, survival and death through alternative mRNA splicing. Different isoforms have different effects: isoform 5 increases cell proliferation whereas isoform 2 decreases it; isoform 1 is susceptible to inducing apoptosis, isoform 5 is resistant []. MADD activates RAB3A, RAB3C and RAB3D by converting them from GDP-bound inactive forms to GTP-bound active forms []. MADD is a component of the TNFRSF1A signaling complex, linking the type 1 tumor necrosis factor receptor TNFRSF1A with MAP kinase activation []. MADD contains a tripartite DENN domain. In the nematode Caenorhabditis elegans, MADD is also known as regulator of presynaptic activity aex-3 [].
Protein Domain
Type: Family
Description: The Rab3 subfamily contains Rab3A, Rab3B, Rab3C, and Rab3D. All four isoforms were found in mouse brain and endocrine tissues, with varying levels of expression. Rab3A, Rab3B, and Rab3C localized to synaptic and secretory vesicles; Rab3D was expressed at high levels only in adipose tissue, exocrine glands, and the endocrine pituitary, where it is localized to cytoplasmic secretory granules []. Rab3 appears to control Ca2+-regulated exocytosis. The appropriate GDP/GTP exchange cycle of Rab3A is required for Ca2+-regulated exocytosis to occur, and interaction of the GTP-bound form of Rab3A with effector molecule(s) is widely believed to be essential for this process [].
Protein Domain
Type: Domain
Description: This entry represents a conserved domain found in the Rab3 GTPase-activating protein catalytic subunit (Rab3GAP1).Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].
Protein Domain
Type: Family
Description: This family represents the regulatory subunit of the Rab3GAP complex, also known as Rab3GAP2. Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].
Protein Domain
Type: Domain
Description: This family includes the N terminus of the Rab3 GTPase-activating protein (GAP) non-catalytic subunit.Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].
Protein Domain
Type: Domain
Description: This entry represents the C terminus of the Rab3 GTPase-activating protein non-catalytic subunit.Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].
Protein Domain
Type: Domain
Description: This entry represents the C-terminal domain found in the Rab3 GTPase-activating protein catalytic subunit (Rab3GAP1) predominantly in animals.Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].
Protein Domain
Type: Family
Description: Small G proteins of the Rab family are regulators of intracellular vesicle traffic. Their rate of GTP hydrolysis is enhanced by specific GTPase-activating proteins (GAPs) that switch G proteins to their inactive form []. Rab3GAP1 (catalytic subunit) has been shown to form a heterodimeric complex with Rab3GAP2 (the regulatory subunit), and this complex acts as a guanosine nucleotide exchange factor for Rab3 subfamily (RAB3A, RAB3B, RAB3C and RAB3D). Rab3GAP complex may participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters [, ]. It also activates Rab18 and promotes autolysosome maturation through the Vps34 Complex I [].Mutations in the Rab3GAP1/2 gene cause Warburg micro syndrome (WMS), a hereditary autosomal neuromuscular disorder [].