Type |
Details |
Score |
Gene |
Type: |
gene |
Organism: |
frog, western clawed |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
human |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chicken |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
dog, domestic |
|
•
•
•
•
•
|
Gene |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
cattle |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
chimpanzee |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
zebrafish |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Miyake Y |
Year: |
2009 |
Journal: |
Mol Cell |
Title: |
RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. |
Volume: |
36 |
Issue: |
2 |
Pages: |
193-206 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
161
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Nakahara M |
Year: |
2013 |
Journal: |
Mamm Genome |
Title: |
Gene-trap mutagenesis using Mol/MSM-1 embryonic stem cells from MSM/Ms mice. |
Volume: |
24 |
Issue: |
5-6 |
Pages: |
228-39 |
|
•
•
•
•
•
|
Publication |
First Author: |
Araki K |
Year: |
1999 |
Journal: |
Cell Mol Biol (Noisy-le-grand) |
Title: |
Exchangeable gene trap using the Cre/mutated lox system. |
Volume: |
45 |
Issue: |
5 |
Pages: |
737-50 |
|
•
•
•
•
•
|
Publication |
First Author: |
Taniwaki T |
Year: |
2005 |
Journal: |
Dev Growth Differ |
Title: |
Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette. |
Volume: |
47 |
Issue: |
3 |
Pages: |
163-72 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGI and IMPC |
Year: |
2018 |
Journal: |
Database Release |
Title: |
MGI Load of Endonuclease-Mediated Alleles (CRISPR) from the International Mouse Phenotyping Consortium (IMPC) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2003 |
Journal: |
Database Download |
Title: |
Integrating Computational Gene Models into the Mouse Genome Informatics (MGI) Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Helmholtz Zentrum Muenchen GmbH |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Adams DJ |
Year: |
2024 |
Journal: |
Nature |
Title: |
Genetic determinants of micronucleus formation in vivo. |
Volume: |
627 |
Issue: |
8002 |
Pages: |
130-136 |
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Magdaleno S |
Year: |
2006 |
Journal: |
PLoS Biol |
Title: |
BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. |
Volume: |
4 |
Issue: |
4 |
Pages: |
e86 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
UniProt Feature |
Begin: |
1 |
Description: |
CST complex subunit TEN1 |
Type: |
chain |
End: |
161 |
|
•
•
•
•
•
|
Gene |
Type: |
gene |
Organism: |
frog, African clawed |
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; wild type |
Allele Type: |
Not Specified |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST15469, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST154985, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST279504, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST290036, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST339221, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST339213, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST393725, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap OST409612, Lexicon Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap Ayu21-T277, Institute of Molecular Embryology and Genetics |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap EUCE0031d11, Helmholtz Zentrum Muenchen GmbH |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; targeted mutation 1e, Helmholtz Zentrum Muenchen GmbH |
Allele Type: |
Targeted |
Attribute String: |
Null/knockout, Reporter |
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; targeted mutation 1a, Helmholtz Zentrum Muenchen GmbH |
Allele Type: |
Targeted |
Attribute String: |
Conditional ready, Null/knockout, Reporter |
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; gene trap IST13755E11, Texas A&M Institute for Genomic Medicine |
Allele Type: |
Gene trapped |
|
|
•
•
•
•
•
|
Allele |
Name: |
TEN1 telomerase capping complex subunit; endonuclease-mediated mutation 1, Helmholtz Zentrum Muenchen GmbH |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
GO Term |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, endonuclease-mediated mutation, mutant strain |
|
•
•
•
•
•
|
Publication |
First Author: |
Renfrew KB |
Year: |
2014 |
Journal: |
PLoS Genet |
Title: |
POT1a and components of CST engage telomerase and regulate its activity in Arabidopsis. |
Volume: |
10 |
Issue: |
10 |
Pages: |
e1004738 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry represents the CST complex subunit Ten1 homologue from plants and animals []. Even though the protein sequence similarity is very low between budding yeast Ten1 () and animal/plant Ten1, they are evolutionarily related. Ten1 is essential for telomere integrity and it negatively regulates telomerase activity [].Two distinct telomere capping complexes have evolved: CST complex in budding yeast and shelterin complex in vertebrates. Budding yeast CST is composed of Cdc13, Ten1 and Stn1 []. The homologues of Ten1 and Stn1 have been identified in vertebrates and plants. The vertebrate CST complex does not appear to play a primary role in telomere protection, but may complement the function of shelterin complex [].Similar to budding yeast Ten1, mammalian Ten1 forms the CST complex with Stn1 homologue and binds to single strand DNA (ssDNA). However, unlike budding yeast CST, the binding of mammalian CST to ssDNA is not sequence specific. The mammalian CST complex may have both telomeric and non-telomeric functions [].In plants, the CST complex is structurally analogous to mammalian CST and it plays a role in chromosome end protection []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Wellinger RJ |
Year: |
2009 |
Journal: |
Mol Cell |
Title: |
The CST complex and telomere maintenance: the exception becomes the rule. |
Volume: |
36 |
Issue: |
2 |
Pages: |
168-9 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length []. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex []. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. S.pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologues exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localise at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Two separate protein complexes are required for chromosome end protection in fission yeast. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution []. Ten1 is one of the three components of the CST complex, which, in conjunction with the Shelterin complex helps protect telomeres from attack by DNA-repair mechanisms [].This entry represent Ten1 from fungi. |
|
•
•
•
•
•
|
Publication |
First Author: |
Price CM |
Year: |
2010 |
Journal: |
Cell Cycle |
Title: |
Evolution of CST function in telomere maintenance. |
Volume: |
9 |
Issue: |
16 |
Pages: |
3157-65 |
|
•
•
•
•
•
|
Publication |
First Author: |
Gao H |
Year: |
2007 |
Journal: |
Nat Struct Mol Biol |
Title: |
RPA-like proteins mediate yeast telomere function. |
Volume: |
14 |
Issue: |
3 |
Pages: |
208-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
MartÃn V |
Year: |
2007 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Protection of telomeres by a conserved Stn1-Ten1 complex. |
Volume: |
104 |
Issue: |
35 |
Pages: |
14038-43 |
|
•
•
•
•
•
|
Publication |
First Author: |
Gelinas AD |
Year: |
2009 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. |
Volume: |
106 |
Issue: |
46 |
Pages: |
19298-303 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
In animals and plants, CTC1 is a component of the CST complex (consists of Ten1, Stn1 and CTC1), a complex that binds to single-stranded DNA and is required to protect telomeres from DNA degradation []. Two distinct telomere capping complexes have evolved: CST complex in budding yeast and shelterin complex in vertebrates. Budding yeast CST is composed of Cdc13, Ten1 and Stn1 []. The homologues of Ten1 and Stn1 have been identified in vertebrates and plants. The vertebrate CST complex does not appear to play a primary role in telomere protection, but may complement the function of shelterin complex []. The mammalian CST complex may have both telomeric and non-telomeric function [].In plants, the contribution of the CST components to chromosome end protection, telomeric DNA replication or both processes remains to be determined []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex []. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast. Two separate protein complexes are required for chromosome end protection in fission yeast while a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution [].This entry represents the C-terminal domain of Stn1 and consists of tandem winged helix-turn-helix motifs [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates and both protect chromosome termini from unregulated resection and regulate telomere length. Stn1 complexes with Ten1 and Cdc13 to function as a telomere-specific replication protein A (RPA)-like complex []. These three interacting proteins associate with the telomeric overhang in budding yeast, whereas a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast. Two separate protein complexes are required for chromosome end protection in fission yeast while a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. Protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution [].This entry represents the C-terminal domain of Stn1 and consists of tandem winged helix-turn-helix motifs [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
In animals and plants, CTC1 is a component of the CST complex (consists of Ten1, Stn1 and CTC1), a complex that binds to single-stranded DNA and is required to protect telomeres from DNA degradation []. Two distinct telomere capping complexes have evolved: CST complex in budding yeast and shelterin complex in vertebrates. Budding yeast CST is composed of Cdc13, Ten1 and Stn1 []. The homologues of Ten1 and Stn1 have been identified in vertebrates and plants. The vertebrate CST complex does not appear to play a primary role in telomere protection, but may complement the function of shelterin complex []. The mammalian CST complex may have both telomeric and non-telomeric function [].In plants, the contribution of the CST components to chromosome end protection, telomeric DNA replication or both processes remains to be determined []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1212
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
965
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Hirawatari K |
Year: |
2015 |
Journal: |
Mamm Genome |
Title: |
A Cascade of epistatic interactions regulating teratozoospermia in mice. |
Volume: |
26 |
Issue: |
5-6 |
Pages: |
248-56 |
|
•
•
•
•
•
|
Publication |
First Author: |
Sun J |
Year: |
2009 |
Journal: |
Genes Dev |
Title: |
Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. |
Volume: |
23 |
Issue: |
24 |
Pages: |
2900-14 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Cdc13 is an essential yeast protein required for telomere length regulation and genome stability. Cdc13, like a number of single-stranded telomere binding proteins, consists of several oligonucleotide-oligosaccharide binding (OB) folds. These folds potentially arise from evolutionary gene duplication and are involved in multiple functions, including nucleic acid and protein binding and Cdc13 dimerization. This entry represents the OB2 domain, second OB-fold counting from the N terminus of Cdc13. Biochemical assays indicate OB2 is not involved in telomeric DNA or Stn1 binding. However, disruption of the OB2 dimer in full-length Cdc13 affects Cdc13-Stn1 association, leading to telomere length deregulation, increased temperature sensitivity, and Stn1 binding defects. Hence it is suggested that the dimerization of the OB2 domain of Cdc13 is required for proper Cdc13, Stn1, Ten1 (CST) assembly and productive telomere capping []. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|