Type |
Details |
Score |
GXD Expression |
Probe: |
MGI:5001349 |
Assay Type: |
RNA in situ |
Annotation Date: |
2014-02-07 |
Strength: |
Absent |
Sex: |
Male |
Emaps: |
EMAPS:3151021 |
|
Stage: |
TS21 |
Assay Id: |
MGI:5541904 |
Age: |
embryonic day 13.5 |
Image: |
GUDMAP:11765 |
|
Specimen Label: |
GUDMAP:11765 |
Detected: |
false |
Specimen Num: |
1 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5001349 |
Assay Type: |
RNA in situ |
Annotation Date: |
2014-02-07 |
Strength: |
Absent |
Sex: |
Male |
Emaps: |
EMAPS:3150421 |
|
Stage: |
TS21 |
Assay Id: |
MGI:5541904 |
Age: |
embryonic day 13.5 |
Image: |
GUDMAP:11765 |
|
Specimen Label: |
GUDMAP:11765 |
Detected: |
false |
Specimen Num: |
1 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5001349 |
Assay Type: |
RNA in situ |
Annotation Date: |
2014-02-07 |
Strength: |
Absent |
Sex: |
Female |
Emaps: |
EMAPS:2896121 |
|
Stage: |
TS21 |
Assay Id: |
MGI:5541904 |
Age: |
embryonic day 13.5 |
Image: |
GUDMAP:11766 |
|
Specimen Label: |
GUDMAP:11766 |
Detected: |
false |
Specimen Num: |
2 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5001349 |
Assay Type: |
RNA in situ |
Annotation Date: |
2014-02-07 |
Strength: |
Absent |
Sex: |
Female |
Emaps: |
EMAPS:2894521 |
|
Stage: |
TS21 |
Assay Id: |
MGI:5541904 |
Age: |
embryonic day 13.5 |
Image: |
GUDMAP:11766 |
|
Specimen Label: |
GUDMAP:11766 |
Detected: |
false |
Specimen Num: |
2 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:5001349 |
Assay Type: |
RNA in situ |
Annotation Date: |
2014-02-07 |
Strength: |
Absent |
Sex: |
Female |
Emaps: |
EMAPS:1796221 |
|
Stage: |
TS21 |
Assay Id: |
MGI:5541904 |
Age: |
embryonic day 13.5 |
Image: |
GUDMAP:11766 |
|
Specimen Label: |
GUDMAP:11766 |
Detected: |
false |
Specimen Num: |
2 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6696346 |
Assay Type: |
RNA in situ |
Annotation Date: |
2021-05-11 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:3817821 |
Pattern: |
Not Specified |
Stage: |
TS21 |
Assay Id: |
MGI:6705002 |
Age: |
embryonic day 13.5 |
Image: |
5Bd |
|
Specimen Label: |
5Bd |
Detected: |
true |
Specimen Num: |
6 |
|
•
•
•
•
•
|
GXD Expression |
Probe: |
MGI:6696346 |
Assay Type: |
RNA in situ |
Annotation Date: |
2021-05-11 |
Strength: |
Present |
Sex: |
Not Specified |
Emaps: |
EMAPS:3817821 |
Pattern: |
Not Specified |
Stage: |
TS21 |
Assay Id: |
MGI:6705002 |
Age: |
embryonic day 13.5 |
Image: |
5Bd' |
|
Specimen Label: |
5Bd' |
Detected: |
true |
Specimen Num: |
7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Connor JX |
Year: |
2005 |
Journal: |
Genes Brain Behav |
Title: |
Genetic modifiers of the Kv beta2-null phenotype in mice. |
Volume: |
4 |
Issue: |
2 |
Pages: |
77-88 |
|
•
•
•
•
•
|
Publication |
First Author: |
Tur J |
Year: |
2017 |
Journal: |
Am J Physiol Heart Circ Physiol |
Title: |
Kvβ1.1 (AKR6A8) senses pyridine nucleotide changes in the mouse heart and modulates cardiac electrical activity. |
Volume: |
312 |
Issue: |
3 |
Pages: |
H571-H583 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bunse S |
Year: |
2009 |
Journal: |
FEBS J |
Title: |
The potassium channel subunit Kvbeta3 interacts with pannexin 1 and attenuates its sensitivity to changes in redox potentials. |
Volume: |
276 |
Issue: |
21 |
Pages: |
6258-70 |
|
•
•
•
•
•
|
Publication |
First Author: |
Downen M |
Year: |
1999 |
Journal: |
Brain Res Dev Brain Res |
Title: |
Developmental expression of voltage-gated potassium channel beta subunits. |
Volume: |
117 |
Issue: |
1 |
Pages: |
71-80 |
|
•
•
•
•
•
|
Publication |
First Author: |
Fink M |
Year: |
1996 |
Journal: |
J Biol Chem |
Title: |
A new K+ channel beta subunit to specifically enhance Kv2.2 (CDRK) expression. |
Volume: |
271 |
Issue: |
42 |
Pages: |
26341-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Aimond F |
Year: |
2005 |
Journal: |
Circ Res |
Title: |
Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes. |
Volume: |
96 |
Issue: |
4 |
Pages: |
451-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
DĆaz Del Moral S |
Year: |
2021 |
Journal: |
Front Cell Dev Biol |
Title: |
Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. |
Volume: |
9 |
|
Pages: |
683861 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chen N |
Year: |
2015 |
Journal: |
Biochim Biophys Acta |
Title: |
Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. |
Volume: |
1854 |
Issue: |
7 |
Pages: |
827-33 |
|
•
•
•
•
•
|
Publication |
First Author: |
Lee Y |
Year: |
2023 |
Journal: |
Elife |
Title: |
Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. |
Volume: |
12 |
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Tarantino LM |
Year: |
2000 |
Journal: |
Hum Mol Genet |
Title: |
Dissection of behavior and psychiatric disorders using the mouse as a model. |
Volume: |
9 |
Issue: |
6 |
Pages: |
953-65 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chiu HS |
Year: |
2010 |
Journal: |
Dev Biol |
Title: |
Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation. |
Volume: |
344 |
Issue: |
2 |
Pages: |
1071-87 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bedogni F |
Year: |
2016 |
Journal: |
Cereb Cortex |
Title: |
Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. |
Volume: |
26 |
Issue: |
6 |
Pages: |
2517-2529 |
|
•
•
•
•
•
|
Publication |
First Author: |
Harrell MD |
Year: |
2007 |
Journal: |
Physiol Genomics |
Title: |
Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. |
Volume: |
28 |
Issue: |
3 |
Pages: |
273-83 |
|
•
•
•
•
•
|
Publication |
First Author: |
Oeschger FM |
Year: |
2012 |
Journal: |
Cereb Cortex |
Title: |
Gene expression analysis of the embryonic subplate. |
Volume: |
22 |
Issue: |
6 |
Pages: |
1343-59 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shanghai Model Organisms Center |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GO Central curators, GOA curators, Rhea curators |
Year: |
2020 |
|
Title: |
Automatic Gene Ontology annotation based on Rhea mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Mouse Synonym Curation |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2016 |
|
Title: |
Automatic assignment of GO terms using logical inference, based on on inter-ontology links |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Thompson CL |
Year: |
2014 |
Journal: |
Neuron |
Title: |
A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. |
Volume: |
83 |
Issue: |
2 |
Pages: |
309-323 |
|
•
•
•
•
•
|
Publication |
First Author: |
GUDMAP Consortium |
Year: |
2004 |
Journal: |
www.gudmap.org |
Title: |
GUDMAP: the GenitoUrinary Development Molecular Anatomy Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Helmholtz Zentrum Muenchen GmbH |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Helmholtz Zentrum Muenchen GmbH (Hmgu) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2014 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-rat orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Gulbis JM |
Year: |
1999 |
Journal: |
Cell |
Title: |
Structure of a voltage-dependent K+ channel beta subunit. |
Volume: |
97 |
Issue: |
7 |
Pages: |
943-52 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The KCNAB family (also known as the Kvbeta family) of voltage-dependent potassium channel beta subunits form complexes with the alpha subunits which can modify the properties of the channel. Four of these soluble beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions. These subunits belong to the family of are NADPH-dependent aldo-keto reductases, and bind NADPH-cofactors in their active sites. Changes in the oxidoreductase activity appear to markedly influence the gating mode of Kv channels, since mutations to the catalytic residues in the active site lessen the inactivating activity of KCNAB []. The KCNAB family is further divided into 3 subfamilies: KCNAB1 (Kvbeta1), KCNAB2 (Kvbeta2) and KCNAB3 (Kvbeta3).KCNAB1 associates with Kv1.4 and Kv1.5 alpha subunits and appears to have an N-terminal sequence that is similar to the Kv1 channel inactivation gate.Thus, when KCNAB1 subunits associate, their N-termini appear to be able to substitute for alpha subunit inactivation gates []. Three isoforms of KCNAB1 exist, which are produced by alternative splicing of the N-terminal90 amino acids. KCNAB1 channels are expressed in brain (caudate nucleus,hippocampus, amygdala, subthalamic nucleus and thalamus) and heart. |
|
•
•
•
•
•
|
Allele |
Name: |
potassium voltage-gated channel, shaker-related subfamily, beta member 1; endonuclease-mediated mutation 1, Shanghai Model Organisms Center |
Allele Type: |
Endonuclease-mediated |
Attribute String: |
Null/knockout |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, mutant strain, endonuclease-mediated mutation |
|
•
•
•
•
•
|
Allele |
Name: |
transgene insertion 1, Matthew Nystoriak |
Allele Type: |
Transgenic |
Attribute String: |
Inducible, Inserted expressed sequence |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
401
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
295
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
300
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
398
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
366
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
347
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
419
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
415
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
408
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
BƤhring R |
Year: |
2001 |
Journal: |
J Biol Chem |
Title: |
Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvbeta subunits. |
Volume: |
276 |
Issue: |
25 |
Pages: |
22923-9 |
|
•
•
•
•
•
|
Strain |
Attribute String: |
coisogenic, mutant strain, transgenic |
|
•
•
•
•
•
|
Publication |
First Author: |
Tempel BL |
Year: |
1988 |
Journal: |
Nature |
Title: |
Cloning of a probable potassium channel gene from mouse brain. |
Volume: |
332 |
Issue: |
6167 |
Pages: |
837-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Perney TM |
Year: |
1991 |
Journal: |
Curr Opin Cell Biol |
Title: |
The molecular biology of K+ channels. |
Volume: |
3 |
Issue: |
4 |
Pages: |
663-70 |
|
•
•
•
•
•
|
Publication |
First Author: |
Luneau C |
Year: |
1991 |
Journal: |
FEBS Lett |
Title: |
Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. |
Volume: |
288 |
Issue: |
1-2 |
Pages: |
163-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Attali B |
Year: |
1992 |
Journal: |
J Biol Chem |
Title: |
Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. |
Volume: |
267 |
Issue: |
12 |
Pages: |
8650-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Schwarz TL |
Year: |
1988 |
Journal: |
Nature |
Title: |
Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. |
Volume: |
331 |
Issue: |
6152 |
Pages: |
137-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Stühmer W |
Year: |
1989 |
Journal: |
EMBO J |
Title: |
Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. |
Volume: |
8 |
Issue: |
11 |
Pages: |
3235-44 |
|
•
•
•
•
•
|
Publication |
First Author: |
Miller C |
Year: |
2000 |
Journal: |
Genome Biol |
Title: |
An overview of the potassium channel family. |
Volume: |
1 |
Issue: |
4 |
Pages: |
REVIEWS0004 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
38
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Grant AW |
Year: |
2003 |
Journal: |
FEMS Microbiol Lett |
Title: |
A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. |
Volume: |
218 |
Issue: |
1 |
Pages: |
93-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Desai KK |
Year: |
2008 |
Journal: |
Biochemistry |
Title: |
A metabolic bypass of the triosephosphate isomerase reaction. |
Volume: |
47 |
Issue: |
31 |
Pages: |
7983-5 |
|
•
•
•
•
•
|
Publication |
First Author: |
Leicher T |
Year: |
1998 |
Journal: |
J Biol Chem |
Title: |
Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium channel. |
Volume: |
273 |
Issue: |
52 |
Pages: |
35095-101 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry consists of the voltage-dependent potassium channel beta subunit KCNAB and related proteins. The bacterial proteins in this entry lack apparent alpha subunit partners and predicted to function as soluble aldo/keto reductase enzymes [, ].Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The KCNAB family (also known as the Kvbeta family) of voltage-dependent potassium channel beta subunits form complexes with the alpha subunits which can modify the properties of the channel. Four of these soluble beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions. These subunits belong to the family of are NADPH-dependent aldo-keto reductases, and bind NADPH-cofactors in their active sites. Changes in the oxidoreductase activity appear to markedly influence the gating mode of Kv channels, since mutations to the catalytic residues in the active site lessen the inactivating activity of KCNAB []. The KCNAB family is further divided into 3 subfamilies: KCNAB1 (Kvbeta1), KCNAB2 (Kvbeta2) and KCNAB3 (Kvbeta3). |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The KCNAB family (also known as the Kvbeta family) of voltage-dependent potassium channel beta subunits form complexes with the alpha subunits which can modify the properties of the channel. Four of these soluble beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions. These subunits belong to the family of are NADPH-dependent aldo-keto reductases, and bind NADPH-cofactors in their active sites. Changes in the oxidoreductase activity appear to markedly influence the gating mode of Kv channels, since mutations to the catalytic residues in the active site lessen the inactivating activity of KCNAB []. The KCNAB family is further divided into 3 subfamilies: KCNAB1 (Kvbeta1), KCNAB2 (Kvbeta2) and KCNAB3 (Kvbeta3). |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. Thefunctional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The KCNAB family (also known as the Kvbeta family) of voltage-dependent potassium channel beta subunits form complexes with the alpha subunits which can modify the properties of the channel. Four of these soluble beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions. These subunits belong to the family of are NADPH-dependent aldo-keto reductases, and bind NADPH-cofactors in their active sites. Changes in the oxidoreductase activity appear to markedly influence the gating mode of Kv channels, since mutations to the catalytic residues in the active site lessen the inactivating activity of KCNAB []. The KCNAB family is further divided into 3 subfamilies: KCNAB1 (Kvbeta1), KCNAB2 (Kvbeta2) and KCNAB3 (Kvbeta3).KCNAB3 associates with Kv1.5 alpha subunits, resulting in a much faster inactivation than is observed in kv1.5 channels formed from alpha subunitsalone []. KCNAB3 channels are expressed specifically in the brain, with most prominent expression in the cerebellum. Weaker expression is observed in the cortex, occipital lobe, frontal lobe and temporal lobe. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Potassium channels are the most diverse group of the ion channel family [, ]. They are important in shaping the action potential, and in neuronal excitability and plasticity []. The potassium channel family is composed of several functionally distinct isoforms, which can be broadly separated into 2 groups []: the practically non-inactivating 'delayed' group and the rapidly inactivating 'transient' group.These are all highly similar proteins, with only small amino acid changes causing the diversity of the voltage-dependent gating mechanism, channel conductance and toxin binding properties. Each type of K+channel is activated by different signals and conditions depending on their type of regulation: some open in response to depolarisation of the plasma membrane; others in response to hyperpolarisation or an increase in intracellular calcium concentration; some can be regulated by binding of a transmitter, together with intracellular kinases; while others are regulated by GTP-binding proteins or other second messengers []. In eukaryotic cells, K+channels are involved in neural signalling and generation of the cardiac rhythm, act as effectors in signal transduction pathways involving G protein-coupled receptors (GPCRs) and may have a role in target cell lysis by cytotoxic T-lymphocytes []. In prokaryotic cells, they play a role in the maintenance of ionic homeostasis [].All K+channels discovered so far possess a core of alpha subunits, each comprising either one or two copies of a highly conserved pore loop domain (P-domain). The P-domain contains the sequence (T/SxxTxGxG), which has been termed the K+selectivity sequence. In families that contain one P-domain, four subunits assemble to form a selective pathway for K+across the membrane. However, it remains unclear how the 2 P-domain subunits assemble to form a selective pore. The functional diversity of these families can arise through homo- or hetero-associations of alpha subunits or association with auxiliary cytoplasmic beta subunits. K+channel subunits containing one pore domain can be assigned into one of two superfamilies: those that possess six transmembrane (TM) domains and those that possess only two TM domains. The six TM domain superfamily can be further subdivided into conserved gene families: the voltage-gated (Kv) channels; the KCNQ channels (originally known as KvLQT channels); the EAG-like K+channels; and three types of calcium (Ca)-activated K+channels (BK, IK and SK) []. The 2TM domain family comprises inward-rectifying K+channels. In addition, there are K+channel alpha-subunits that possess two P-domains. These are usually highly regulated K+selective leak channels.The KCNAB family (also known as the Kvbeta family) of voltage-dependent potassium channel beta subunits form complexes with the alpha subunits which can modify the properties of the channel. Four of these soluble beta subunits form a complex with four alpha subunit cytoplasmic (T1) regions. These subunits belong to the family of are NADPH-dependent aldo-keto reductases, and bind NADPH-cofactors in their active sites. Changes in the oxidoreductase activity appear to markedly influence the gating mode of Kv channels, since mutations to the catalytic residues in the active site lessen the inactivating activity of KCNAB []. The KCNAB family is further divided into 3 subfamilies: KCNAB1 (Kvbeta1), KCNAB2 (Kvbeta2) and KCNAB3 (Kvbeta3).KCNAB2 associates with Kv1.4 alpha subunits; however, association has onlyvery modest effects on the gating of this channel []. Two isoforms of KCNAB2exist, which are produced by alternative splicing of amino acids 26-39. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
367
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
249
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
353
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
257
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
404
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
382
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
347
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
404
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
404
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
404
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
134
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
51
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
56
 |
Fragment?: |
true |
|
•
•
•
•
•
|