Type |
Details |
Score |
Publication |
First Author: |
Delhanty PJ |
Year: |
2014 |
Journal: |
Mol Biol Rep |
Title: |
Functional characterization of a new human melanocortin-4 receptor homozygous mutation (N72K) that is associated with early-onset obesity. |
Volume: |
41 |
Issue: |
12 |
Pages: |
7967-72 |
|
•
•
•
•
•
|
Publication |
First Author: |
Xu Y |
Year: |
2020 |
Journal: |
Cell Mol Life Sci |
Title: |
Melanocortin 5 receptor signaling pathway in health and disease. |
Volume: |
77 |
Issue: |
19 |
Pages: |
3831-3840 |
|
•
•
•
•
•
|
Publication |
First Author: |
Farooqi IS |
Year: |
2003 |
Journal: |
N Engl J Med |
Title: |
Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. |
Volume: |
348 |
Issue: |
12 |
Pages: |
1085-95 |
|
•
•
•
•
•
|
Publication |
First Author: |
Sebag JA |
Year: |
2013 |
Journal: |
Science |
Title: |
Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. |
Volume: |
341 |
Issue: |
6143 |
Pages: |
278-81 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
G protein-coupled receptors (GPCRs) constitute a vast protein family that encompasses a wide range of functions, including various autocrine, paracrine and endocrine processes. They show considerable diversity at the sequence level, on the basis of which they can be separated into distinct groups []. The term clan can be used to describe the GPCRs, as they embrace a group of families for which there are indications of evolutionary relationship, but between which there is no statistically significant similarity in sequence []. The currently known clan members include rhodopsin-like GPCRs (Class A, GPCRA), secretin-like GPCRs (Class B, GPCRB), metabotropic glutamate receptor family (Class C, GPCRC), fungal mating pheromone receptors (Class D, GPCRD), cAMP receptors (Class E, GPCRE) and frizzled/smoothened (Class F, GPCRF) [, , , , ]. GPCRs are major drug targets, and are consequently the subject of considerable research interest. It has been reported that the repertoire of GPCRs for endogenous ligands consists of approximately 400 receptors in humans and mice []. Most GPCRs are identified on the basis of their DNA sequences, rather than the ligand they bind, those that are unmatched to known natural ligands are designated by as orphan GPCRs, or unclassified GPCRs [].The rhodopsin-like GPCRs (GPCRA) represent a widespread protein family that includes hormone, neurotransmitter and light receptors, all of which transduce extracellular signals through interaction with guanine nucleotide-binding (G) proteins. Although their activating ligands vary widely in structure and character, the amino acid sequences of the receptors are very similar and are believed to adopt a common structural framework comprising 7 transmembrane (TM) helices [, , ].Adrenocorticotrophin (ACTH), melanocyte-stimulating hormones (MSH) andbeta-endorphin are peptide products of pituitary pro-opiomelanocortin.ACTH regulates synthesis and release of glucocorticoids and aldosteronein the adrenal cortex; it also has a trophic action on these cells.ACTH and beta-endorphin are synthesised and released in response tocorticotrophin-releasing factor at times of stress (heat, cold, infections,etc.) - their release leads to increased metabolism and analgesia.MSH has a trophic action on melanocytes, and regulates pigment productionin fish and amphibia. The ACTH receptor is found in high levels inthe adrenal cortex - binding sites are present in lower levels in theCNS. The MSH receptor is expressed in high levels in melanocytes,melanomas and their derived cell lines. Receptors are found in lowlevels in the CNS. MSH regulates temperature control in the septal regionof the brain and releases prolactin from the pituitary.This entry represents Melanocortin receptor 3-5 (MC3-5R) from chordates. These protein are receptors for MSH (alpha, beta and gamma) and ACTH. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. MC3R is required for expression of anticipatory patterns of activity and wakefulness during periods of limited nutrient availability and for the normal regulation of circadian clock activity in the brain []. MC4R plays a central role in energy homeostasis and somatic growth [, , ]. MC5R is a possible mediator of the immunomodulation properties of melanocortins, playing a role in immune reaction and inflammatory response as well as in the regulation of sexual behaviour, thermoregulation, and exocrine secretion []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
136
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
323
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
332
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
325
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
372
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
323
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
372
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
323
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
332
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Birnbaumer L |
Year: |
1990 |
Journal: |
Annu Rev Pharmacol Toxicol |
Title: |
G proteins in signal transduction. |
Volume: |
30 |
|
Pages: |
675-705 |
|
•
•
•
•
•
|
Publication |
First Author: |
Casey PJ |
Year: |
1988 |
Journal: |
J Biol Chem |
Title: |
G protein involvement in receptor-effector coupling. |
Volume: |
263 |
Issue: |
6 |
Pages: |
2577-80 |
|
•
•
•
•
•
|
Publication |
First Author: |
Attwood TK |
Year: |
1993 |
Journal: |
Protein Eng |
Title: |
Design of a discriminating fingerprint for G-protein-coupled receptors. |
Volume: |
6 |
Issue: |
2 |
Pages: |
167-76 |
|
•
•
•
•
•
|
Publication |
First Author: |
Vassilatis DK |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
The G protein-coupled receptor repertoires of human and mouse. |
Volume: |
100 |
Issue: |
8 |
Pages: |
4903-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Attwood TK |
Year: |
1994 |
Journal: |
Protein Eng |
Title: |
Fingerprinting G-protein-coupled receptors. |
Volume: |
7 |
Issue: |
2 |
Pages: |
195-203 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kolakowski LF Jr |
Year: |
1994 |
Journal: |
Receptors Channels |
Title: |
GCRDb: a G-protein-coupled receptor database. |
Volume: |
2 |
Issue: |
1 |
Pages: |
1-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Foord SM |
Year: |
2005 |
Journal: |
Pharmacol Rev |
Title: |
International Union of Pharmacology. XLVI. G protein-coupled receptor list. |
Volume: |
57 |
Issue: |
2 |
Pages: |
279-88 |
|
•
•
•
•
•
|
Publication |
First Author: |
Harmar AJ |
Year: |
2009 |
Journal: |
Nucleic Acids Res |
Title: |
IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. |
Volume: |
37 |
Issue: |
Database issue |
Pages: |
D680-5 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bjarnadóttir TK |
Year: |
2006 |
Journal: |
Genomics |
Title: |
Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. |
Volume: |
88 |
Issue: |
3 |
Pages: |
263-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Civelli O |
Year: |
2013 |
Journal: |
Annu Rev Pharmacol Toxicol |
Title: |
G protein-coupled receptor deorphanizations. |
Volume: |
53 |
|
Pages: |
127-46 |
|
•
•
•
•
•
|