Type |
Details |
Score |
Publication |
First Author: |
Tatarakis A |
Year: |
2008 |
Journal: |
Mol Cell |
Title: |
Dominant and redundant functions of TFIID involved in the regulation of hepatic genes. |
Volume: |
31 |
Issue: |
4 |
Pages: |
531-43 |
|
•
•
•
•
•
|
Publication |
First Author: |
Hammock EA |
Year: |
2010 |
Journal: |
Neural Dev |
Title: |
Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain. |
Volume: |
5 |
|
Pages: |
32 |
|
•
•
•
•
•
|
Publication |
First Author: |
Suzuki H |
Year: |
2001 |
Journal: |
Genome Res |
Title: |
Protein-protein interaction panel using mouse full-length cDNAs. |
Volume: |
11 |
Issue: |
10 |
Pages: |
1758-65 |
|
•
•
•
•
•
|
Publication |
First Author: |
Birgit Meldal and Sandra Orchard (1). (1) European Bioinformatics Institute (EBI), Hinxton, Cambridgeshire, United Kingdom |
Year: |
2023 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to homologous complexes by curator judgment of sequence, composition and function similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Ko MS |
Year: |
2000 |
Journal: |
Development |
Title: |
Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. |
Volume: |
127 |
Issue: |
8 |
Pages: |
1737-49 |
|
•
•
•
•
•
|
Publication |
First Author: |
Yokoyama S |
Year: |
2009 |
Journal: |
Dev Cell |
Title: |
A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. |
Volume: |
17 |
Issue: |
6 |
Pages: |
836-48 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2001 |
|
Title: |
Gene Ontology Annotation by the MGI Curatorial Staff |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Thompson CL |
Year: |
2014 |
Journal: |
Neuron |
Title: |
A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. |
Volume: |
83 |
Issue: |
2 |
Pages: |
309-323 |
|
•
•
•
•
•
|
Publication |
First Author: |
Visel A |
Year: |
2004 |
Journal: |
Nucleic Acids Res |
Title: |
GenePaint.org: an atlas of gene expression patterns in the mouse embryo. |
Volume: |
32 |
Issue: |
Database issue |
Pages: |
D552-6 |
|
•
•
•
•
•
|
Publication |
First Author: |
Stryke D |
Year: |
2003 |
Journal: |
Nucleic Acids Res |
Title: |
BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. |
Volume: |
31 |
Issue: |
1 |
Pages: |
278-81 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bedogni F |
Year: |
2021 |
Journal: |
Front Mol Neurosci |
Title: |
Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. |
Volume: |
14 |
|
Pages: |
686034 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wellcome Trust Sanger Institute |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Wellcome Trust Sanger Institute |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GUDMAP Consortium |
Year: |
2004 |
Journal: |
www.gudmap.org |
Title: |
GUDMAP: the GenitoUrinary Development Molecular Anatomy Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2014 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-rat orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Chromosome assignment of mouse genes using the Mouse Genome Sequencing Consortium (MGSC) assembly and the ENSEMBL Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Regulation of mRNA synthesis requires intermediary proteins that transduce regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Three types of intermediary factors that enable the basal transcription machinery to respond to transcriptional activator proteins bound to regulatory DNA sequences have been identified: (i) TAFIIs, which associate with TATA-binding protein (TBP) to form TFIID; (ii) mediator, which associates with RNA polymerase II to form a holo-polymerase; and (iii) coactivators such as human upstream stimulatory activity (USA), mammalian CBP/P300, yeast ADA complex, and HMG proteins. The interaction of these multiprotein complexes with activators and general transcription factors is essential for transcriptional regulation.This family of proteins represent the transcriptional mediator protein subunit 6 that is required for activation of many RNA polymerase II promoters and which are conserved from yeast to humans []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Larivière L |
Year: |
2012 |
Journal: |
Nature |
Title: |
Structure of the Mediator head module. |
Volume: |
492 |
Issue: |
7429 |
Pages: |
448-51 |
|
•
•
•
•
•
|
Publication |
First Author: |
Poss ZC |
Year: |
2013 |
Journal: |
Crit Rev Biochem Mol Biol |
Title: |
The Mediator complex and transcription regulation. |
Volume: |
48 |
Issue: |
6 |
Pages: |
575-608 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
This superfamily represents the core domain of the Mediator complex subunit 6 (MED6) that is required for activation of many RNA polymerase II promoters and which is conserved from yeast to humans [, ].The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex is composed of 20 subunits in yeast and 26 subunits in humans. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. A 4 subunit kinase module, the CDK8 module, can reversibly associate with the Mediator complex [].The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
246
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
195
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Lee YC |
Year: |
1997 |
Journal: |
Mol Cell Biol |
Title: |
A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. |
Volume: |
17 |
Issue: |
8 |
Pages: |
4622-32 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Regulation of mRNA synthesis requires intermediary proteins that transduce regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Three types of intermediary factors that enable the basal transcription machinery to respond to transcriptional activator proteins bound to regulatory DNA sequences have been identified: (i) TAFIIs, which associate with TATA-binding protein (TBP) to form TFIID; (ii) mediator, which associates with RNA polymerase II to form a holo-polymerase; and (iii) coactivators such as human upstream stimulatory activity (USA), mammalian CBP/P300, yeast ADA complex, and HMG proteins. The interaction of these multiprotein complexes with activators and general transcription factors is essential for transcriptional regulation. This family of proteins represent the transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and which are conserved from yeast to humans [].This entry represents the Med6 subunit of the Mediator complex in fungi. |
|
•
•
•
•
•
|