Type |
Details |
Score |
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Birgit Meldal and Sandra Orchard (1). (1) European Bioinformatics Institute (EBI), Hinxton, Cambridgeshire, United Kingdom |
Year: |
2023 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to homologous complexes by curator judgment of sequence, composition and function similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Ko MS |
Year: |
2000 |
Journal: |
Development |
Title: |
Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. |
Volume: |
127 |
Issue: |
8 |
Pages: |
1737-49 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory |
Year: |
2012 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the KOMP project by The Jackson Laboratory |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations for FANTOM2 data |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bedogni F |
Year: |
2021 |
Journal: |
Front Mol Neurosci |
Title: |
Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. |
Volume: |
14 |
|
Pages: |
686034 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wellcome Trust Sanger Institute |
Year: |
2009 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the KOMP project by the Wellcome Trust Sanger Institute |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GUDMAP Consortium |
Year: |
2004 |
Journal: |
www.gudmap.org |
Title: |
GUDMAP: the GenitoUrinary Development Molecular Anatomy Project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC) |
Year: |
2014 |
Journal: |
Database Release |
Title: |
Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Magdaleno S |
Year: |
2006 |
Journal: |
PLoS Biol |
Title: |
BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. |
Volume: |
4 |
Issue: |
4 |
Pages: |
e86 |
|
•
•
•
•
•
|
Publication |
First Author: |
Adams DJ |
Year: |
2024 |
Journal: |
Nature |
Title: |
Genetic determinants of micronucleus formation in vivo. |
Volume: |
627 |
Issue: |
8002 |
Pages: |
130-136 |
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Cyagen Biosciences Inc. |
Year: |
2022 |
|
Title: |
Cyagen Biosciences Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Allele |
Name: |
MSL3 like 2; wild type |
Allele Type: |
Not Specified |
|
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus caroli |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus pahari |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
Mus spretus |
|
•
•
•
•
•
|
HT Experiment |
|
Experiment Type: |
RNA-Seq |
Study Type: |
WT vs. Mutant |
Source: |
GEO |
|
•
•
•
•
•
|
DO Term |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
E3 ubiquitin-protein ligase MSL2 (MSL2; [intenz:6.3.2.-]) is an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A. It is a component of MSL complex [].The male-specific lethal (MSL) complex is a histone acetyltransferase with specificity for histone H4 'lysine-16' in chromatin. The complex consists of MOF, MSL1, MSL2, and MSL3 []. The complex was first identified in Drosophila. |
|
•
•
•
•
•
|
Publication |
First Author: |
Neal KC |
Year: |
2000 |
Journal: |
Biochim Biophys Acta |
Title: |
A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. |
Volume: |
1490 |
Issue: |
1-2 |
Pages: |
170-4 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Histone acetyltransferase KAT8 () has activity directed towards histones H3, H2A and H4 []and is the active component of the MSL and NSL complexes []. KAT8 autoacetylates itself on Lys-274 which is a requirement for binding to histone H4 []. In Drosophila melanogaster this protein is known as 'males-absent on the first protein' (MOF) [].The male-specific lethal (MSL) complex is a histone acetyltransferase with specificity for histone H4 'lysine-16' in chromatin. The complex consists of MOF, MSL1, MSL2, and MSL3 []. The complex was first identified in Drosophila. |
|
•
•
•
•
•
|
Publication |
First Author: |
Hallacli E |
Year: |
2012 |
Journal: |
Mol Cell |
Title: |
Msl1-mediated dimerization of the dosage compensation complex is essential for male X-chromosome regulation in Drosophila. |
Volume: |
48 |
Issue: |
4 |
Pages: |
587-600 |
|
•
•
•
•
•
|
Publication |
First Author: |
Raja SJ |
Year: |
2010 |
Journal: |
Mol Cell |
Title: |
The nonspecific lethal complex is a transcriptional regulator in Drosophila. |
Volume: |
38 |
Issue: |
6 |
Pages: |
827-41 |
|
•
•
•
•
•
|
Publication |
First Author: |
Yuan H |
Year: |
2012 |
Journal: |
EMBO J |
Title: |
MYST protein acetyltransferase activity requires active site lysine autoacetylation. |
Volume: |
31 |
Issue: |
1 |
Pages: |
58-70 |
|
•
•
•
•
•
|
Publication |
First Author: |
Felder RA |
Year: |
1989 |
Journal: |
Semin Nephrol |
Title: |
Role of endogenous dopamine on renal sodium excretion. |
Volume: |
9 |
Issue: |
1 |
Pages: |
91-3 |
|
•
•
•
•
•
|
Publication |
First Author: |
Joshi AA |
Year: |
2005 |
Journal: |
Mol Cell |
Title: |
Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. |
Volume: |
20 |
Issue: |
6 |
Pages: |
971-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chen M |
Year: |
2010 |
Journal: |
Ann N Y Acad Sci |
Title: |
Emerging role of the MORF/MRG gene family in various biological processes, including aging. |
Volume: |
1197 |
|
Pages: |
134-41 |
|
•
•
•
•
•
|
Publication |
First Author: |
Straub T |
Year: |
2007 |
Journal: |
Nat Rev Genet |
Title: |
Dosage compensation: the beginning and end of generalization. |
Volume: |
8 |
Issue: |
1 |
Pages: |
47-57 |
|
•
•
•
•
•
|
Publication |
First Author: |
Conrad T |
Year: |
2012 |
Journal: |
Dev Cell |
Title: |
The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex. |
Volume: |
22 |
Issue: |
3 |
Pages: |
610-24 |
|
•
•
•
•
•
|
Publication |
First Author: |
Eissenberg JC |
Year: |
2012 |
Journal: |
Gene |
Title: |
Structural biology of the chromodomain: form and function. |
Volume: |
496 |
Issue: |
2 |
Pages: |
69-78 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry represents MRG protein family, whose members include MORF4L1/2 (MRG15/MRGX) and MSL3L1/2 from humans, ESA1-associated factor 3 (Eaf3) from yeasts and male-specific lethal 3 (MSL3) from flies. They contain an N-terminal chromodomain that binds H3K36me3, a histone mark associated with transcription elongation []. Saccharomyces cerevisiae Eaf3 is a component of both NuA4 histone acetyltransferase and Rpd3S histone deacetylase complexes [, ]. It was found that Eaf3 mediates preferential deacetylation of coding regions through an interaction between the Eaf3 chromodomain and methylated H3-K36 that presumably results in preferential association of the Rpd3 complex []. The Drosophila MSL proteins (MSL1, MSL2, MSL3, MLE, and MOF) are essential for elevating transcription of the single X chromosome in the male (X chromosome dosage compensation) []. Together with two partlyredundant non-coding RNAs, roX1 and roX2, they form the MSL complex, also known as dosage compensation complex or DCC. MSL complex upregulates transcription by spreading the histone H4 Lys16 (H4K16) acetyl mark []and allows compensation for the loss of one X-chromosomal allele by increasing the transcription from the retained allele []. The MSL3 chromodomain has been shown to bind DNA and methylated H4K20 in vitro []. Human MORF4L1, also known as MRG15, is a component of the NuA4 histone acetyltransferase complex that transcriptional activates genes by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. NuA4 complex may also play a direct role in DNA repair when directly recruited to sites of DNA damage. MRG15 is also a component of the mSin3A/Pf1/HDAC complex which acts to repress transcription by deacetylation of nucleosomal histones. MRG15 was found to interact with PALB2, a tumour suppressor protein that plays a crucial role in DNA damage repair by homologous recombination []. Furthermore, MRG15 play a role in the response to double strand breaks (DSBs) by recruiting the BRCA complex (BRCA1, PALB2, BRCA2 and RAD51) to sites of damaged DNA [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
The CHROMO (CHRromatin Organization MOdifier) domain [, , , ]is a conserved region of around 60 amino acids, originally identified in Drosophila modifiers of variegation. These are proteins that alter the structure of chromatin to the condensed morphology of heterochromatin, a cytologically visible condition where gene expression is repressed. In one of these proteins, Polycomb, the chromo domain has been shown to be important for chromatin targeting. Proteins that contain a chromo domain appear to fall into 3 classes. The first class includes proteins having an N-terminal chromo domain followed by a region termed the chromo shadow domain, with weak but significant sequence similarity to the N-terminal chromo domain [], eg. Drosophila and human heterochromatin protein Su(var)205 (HP1). The second class includes proteins with a single chromo domain, eg. Drosophila protein Polycomb (Pc); mammalian modifier 3; human Mi-2 autoantigen and several yeast and Caenorhabditis elegans hypothetical proteins. In the third class paired tandem chromo domains are found, eg. in mammalian DNA-binding/helicase proteins CHD-1 to CHD-4 and yeast protein CHD1.Functional dissections of chromo domain proteins suggests a mechanistic role for chromo domains in targeting chromo domain proteins to specific regions of the nucleus. The mechanism of targeting may involve protein-protein and/or protein/nucleic acid interactions. Hence, several line of evidence show that the HP1 chromo domain is a methyl-specific histone binding module, whereas the chromo domain of two protein components of the drosophila dosage compensation complex, MSL3 and MOF, contain chromo domains that bind to RNA in vitro [].The high resolution structures of HP1-family protein chromo and chromo shadow domain reveal a conserved chromo domain fold motif consisting of three β-strands packed against an α-helix. The chromo domain fold belongs to the OB (oligonucleotide/oligosaccharide binding)-fold class found in a variety of prokaryotic and eukaryotic nucleic acid binding protein []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
The CHROMO (CHRromatin Organization MOdifier) domain [, , , ]is a conserved region of around 60 amino acids, originally identified in Drosophila modifiers of variegation. These are proteins that alter the structure of chromatin to the condensed morphology of heterochromatin, a cytologically visible condition where gene expression is repressed. In one of these proteins, Polycomb, the chromo domain has been shown to be important for chromatin targeting. Proteins that contain a chromo domain appear to fall into 3 classes. The first class includes proteins having an N-terminal chromo domain followed by a region termed the chromo shadow domain, with weak but significant sequence similarity to the N-terminal chromo domain [], eg. Drosophila and human heterochromatin protein Su(var)205 (HP1). The second class includes proteins with a single chromo domain, eg. Drosophila protein Polycomb (Pc); mammalian modifier 3; human Mi-2 autoantigen and several yeast and Caenorhabditis elegans hypothetical proteins. In the third class paired tandem chromo domains are found, eg. in mammalian DNA-binding/helicase proteins CHD-1 to CHD-4 and yeast protein CHD1.Functional dissections of chromo domain proteins suggests a mechanistic role for chromo domains in targeting chromo domain proteins to specific regions of the nucleus. The mechanism of targeting may involve protein-protein and/or protein/nucleic acid interactions. Hence, several line of evidence show that the HP1 chromo domain is a methyl-specific histone binding module, whereas the chromo domain of two protein components of the drosophila dosage compensation complex, MSL3 and MOF, contain chromo domains that bind to RNA in vitro [].The high resolution structures of HP1-family protein chromo and chromo shadow domain reveal a conserved chromo domain fold motif consisting of three β-strands packed against an α-helix. The chromo domain fold belongs to the OB (oligonucleotide/oligosaccharide binding)-fold class found in a variety of prokaryotic and eukaryotic nucleic acid binding protein []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Conserved_site |
Description: |
The CHROMO (CHRromatin Organization MOdifier) domain [, , , ]is a conserved region of around 60 amino acids, originally identified in Drosophila modifiers of variegation. These are proteins that alter the structure of chromatin to the condensed morphology of heterochromatin, a cytologically visible condition where gene expression is repressed. In one of these proteins, Polycomb, the chromo domain has been shown to be important for chromatin targeting. Proteins that contain a chromo domain appear to fall into 3 classes. The first class includes proteins having an N-terminal chromo domain followed by a region termed the chromo shadow domain, with weak but significant sequence similarity to the N-terminal chromo domain [], eg. Drosophila and human heterochromatin protein Su(var)205 (HP1). The second class includes proteins with a single chromo domain, eg. Drosophila protein Polycomb (Pc); mammalian modifier 3; human Mi-2 autoantigen and several yeast and Caenorhabditis elegans hypothetical proteins. In the third class paired tandem chromo domains are found, eg. in mammalian DNA-binding/helicase proteins CHD-1 to CHD-4 and yeast protein CHD1.Functional dissections of chromo domain proteins suggests a mechanistic role for chromo domains in targeting chromo domain proteins to specific regions of the nucleus. The mechanism of targeting may involve protein-protein and/or protein/nucleic acid interactions. Hence, several line of evidence show that the HP1 chromo domain is a methyl-specific histone binding module, whereas the chromo domain of two protein components of the drosophila dosage compensation complex, MSL3 and MOF, contain chromo domains that bind to RNA in vitro [].The high resolution structures of HP1-family protein chromo and chromo shadow domain reveal a conserved chromo domain fold motif consisting of three β-strands packed against an α-helix. The chromo domain fold belongs to the OB (oligonucleotide/oligosaccharide binding)-fold class found in a variety of prokaryotic and eukaryotic nucleic acid binding protein [].This entry represents a conserved site in the chromo domain. |
|
•
•
•
•
•
|
Publication |
First Author: |
Eissenberg JC |
Year: |
2001 |
Journal: |
Gene |
Title: |
Molecular biology of the chromo domain: an ancient chromatin module comes of age. |
Volume: |
275 |
Issue: |
1 |
Pages: |
19-29 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
503
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Singh PB |
Year: |
1991 |
Journal: |
Nucleic Acids Res |
Title: |
A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. |
Volume: |
19 |
Issue: |
4 |
Pages: |
789-94 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
593
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
362
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
519
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
359
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
74
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
150
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
333
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
503
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
180
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
133
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
120
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
168
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
519
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
127
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
503
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Aasland R |
Year: |
1995 |
Journal: |
Nucleic Acids Res |
Title: |
The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. |
Volume: |
23 |
Issue: |
16 |
Pages: |
3168-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Koonin EV |
Year: |
1995 |
Journal: |
Nucleic Acids Res |
Title: |
The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. |
Volume: |
23 |
Issue: |
21 |
Pages: |
4229-33 |
|
•
•
•
•
•
|
Publication |
First Author: |
Paro R |
Year: |
1990 |
Journal: |
Trends Genet |
Title: |
Imprinting a determined state into the chromatin of Drosophila. |
Volume: |
6 |
Issue: |
12 |
Pages: |
416-21 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
100
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
121
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
42
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
347
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
71
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
176
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
158
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
185
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
183
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
191
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
858
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
551
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
414
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
183
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
396
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
138
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
843
 |
Fragment?: |
false |
|
•
•
•
•
•
|