Type |
Details |
Score |
Publication |
First Author: |
Cyagen Biosciences Inc. |
Year: |
2022 |
|
Title: |
Cyagen Biosciences Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Pathway |
|
•
•
•
•
•
|
Publication |
First Author: |
Burke TW |
Year: |
2001 |
Journal: |
J Biol Chem |
Title: |
Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. |
Volume: |
276 |
Issue: |
18 |
Pages: |
15397-408 |
|
•
•
•
•
•
|
Publication |
First Author: |
Miyake Y |
Year: |
2005 |
Journal: |
J Biol Chem |
Title: |
Novel splicing variant of mouse Orc1 is deficient in nuclear translocation and resistant for proteasome-mediated degradation. |
Volume: |
280 |
Issue: |
13 |
Pages: |
12643-52 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kuo AJ |
Year: |
2012 |
Journal: |
Nature |
Title: |
The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. |
Volume: |
484 |
Issue: |
7392 |
Pages: |
115-9 |
|
•
•
•
•
•
|
DO Term |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
613
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
583
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
611
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
522
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
581
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
576
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
433
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
262
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
435
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
715
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Yamada M |
Year: |
1998 |
Journal: |
J Biol Chem |
Title: |
Y'-Help1, a DNA helicase encoded by the yeast subtelomeric Y' element, is induced in survivors defective for telomerase. |
Volume: |
273 |
Issue: |
50 |
Pages: |
33360-6 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
This entry represents the ORC1-binding domain of Sir1. It has a complex fold, composed of an alpha hairpin, meander β-sheet and a five-stranded barrel of unusual topology. Sir1 interacts with the BAH domain of the Orc1 subunit of the origin recognition complex (ORC) resulting in the establishment of silent chromatin at HMR and HML in S.cerevisiae []. The amino acids from the ORC interaction region of Sir1 are presented on a conserved, convex surface that forms a complementary interface with the Orc1 BAH domain, critical for transcriptional silencing []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This entry represents the ORC-binding domain of Sir1. Sir1 interacts with the BAH domain of the Orc1 subunit of the origin recognition complex (ORC) resulting in the establishment of silent chromatin at HMR and HML in S.cerevisiae []. The amino acids from the ORC interaction region of Sir1 are presented on a conserved, convex surface that forms a complementary interface with the Orc1 BAH domain, critical for transcriptional silencing []. Proteins containing this domain also include Y' element ATP-dependent helicase protein 1, which catalyses DNA unwinding and is involved in telomerase-independent telomere maintenance []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
562
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Hou Z |
Year: |
2005 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. |
Volume: |
102 |
Issue: |
24 |
Pages: |
8489-94 |
|
•
•
•
•
•
|
Publication |
First Author: |
Laman H |
Year: |
2001 |
Journal: |
Exp Cell Res |
Title: |
Cyclin-mediated export of human Orc1. |
Volume: |
271 |
Issue: |
2 |
Pages: |
230-7 |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
557
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
821
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
719
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
904
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
833
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
734
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
862
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
812
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
576
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
186
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
528
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Quintana DG |
Year: |
1997 |
Journal: |
J Biol Chem |
Title: |
Identification of HsORC4, a member of the human origin of replication recognition complex. |
Volume: |
272 |
Issue: |
45 |
Pages: |
28247-51 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chuang RY |
Year: |
1999 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. |
Volume: |
96 |
Issue: |
6 |
Pages: |
2656-61 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. This group represents an origin recognition complex, subunit 4. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This domain contains a P-loop motif that is characteristic of the AAA superfamily. This domain has been classified as AAA_16 in Pfam and can be found in the Origin Recognition Complex (ORC) subunits and serine/threonine-protein kinase PknK. The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (akaCdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ].Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. This entry represents subunit 2, which binds the origin of replication. It plays a role in chromosome replication and mating type transcriptional silencing. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This entry represents the C terminus of origin recognition complex subunit 4 [, ].The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Springer J |
Year: |
1999 |
Journal: |
Chromosoma |
Title: |
Identification and characterization of MmORC4 and MmORC5, two subunits of the mouse origin of replication recognition complex. |
Volume: |
108 |
Issue: |
4 |
Pages: |
243-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
Springer J |
Year: |
1999 |
Journal: |
Cytogenet Cell Genet |
Title: |
Identification and chromosomal localization of murine ORC3, a new member of the mouse origin recognition complex. |
Volume: |
87 |
Issue: |
3-4 |
Pages: |
245-51 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
433
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
281
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
433
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
277
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. This entry represents subunit 6, which directs DNA replication by binding to replication origins and is also involved in transcriptional silencing; interacts with Spp1 and with trimethylated histone H3; phosphorylated by Cdc28 [, ]. In Saccharomyces cerevisiae (Baker's yeast), both ends of the Orc6 interact with Cdt1 []and the N terminus mediates an interaction with the S-phase cyclin Clb5 []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Origin Recognition Complex (ORC) is a six-subunit ATP-dependent DNA-binding complex encoded in yeast by ORC1-6 []. ORC is a central component for eukaryotic DNA replication, and binds chromatin at replication origins throughout the cell cycle []. ORC directs DNA replication throughout the genome and is required for its initiation [, , ]. ORC bound at replication origins serves as the foundation for assembly of the pre-replicative complex (pre-RC), which includes Cdc6, Tah11 (aka Cdt1), and the Mcm2-7 complex [, , ]. Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase [, , ]. Cell cycle-regulated phosphorylation of ORC2, ORC6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase [, , , ]. In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR) [, , ]. ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers [, , ]. Both ORC1 and ORC5 bind ATP, although only ORC1 has ATPase activity []. The binding of ATP by ORC1 is required for ORC binding to DNA and is essential for cell viability []. The ATPase activity of ORC1 is involved in formation of the pre-RC [, , ]. ATP binding by ORC5 is crucial for the stability of ORC as a whole. Only the ORC1-5 subunits are required for origin binding; ORC6 is essential for maintenance of pre-RCs once formed []. Interactions within ORC suggest that ORC2-3-6 may form a core complex []. ORC homologues have been found in various eukaryotes, including fission yeast, insects, amphibians, and humans []. This entry represents subunit 6, which directs DNA replication by binding to replication origins and is also involved in transcriptional silencing; interacts with Spp1 and with trimethylated histone H3; phosphorylated by Cdc28 [, ]. In Saccharomyces cerevisiae (Baker's yeast), both ends of the Orc6 interact with Cdt1 []and the N terminus mediates an interaction with the S-phase cyclin Clb5 []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
237
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
156
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
262
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
138
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
197
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
312
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
160
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Ubersax JA |
Year: |
2003 |
Journal: |
Nature |
Title: |
Targets of the cyclin-dependent kinase Cdk1. |
Volume: |
425 |
Issue: |
6960 |
Pages: |
859-64 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wilmes GM |
Year: |
2004 |
Journal: |
Genes Dev |
Title: |
Interaction of the S-phase cyclin Clb5 with an "RXL" docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. |
Volume: |
18 |
Issue: |
9 |
Pages: |
981-91 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chen S |
Year: |
2007 |
Journal: |
Genes Dev |
Title: |
Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. |
Volume: |
21 |
Issue: |
22 |
Pages: |
2897-907 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mishra L |
Year: |
1999 |
Journal: |
Mamm Genome |
Title: |
Genomic structure, chromosomal mapping, and muscle-specific expression of a PH domain-associated intronless gene, cded/lior. |
Volume: |
10 |
Issue: |
1 |
Pages: |
62-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Long H |
Year: |
2020 |
Journal: |
Nature |
Title: |
H2A.Z facilitates licensing and activation of early replication origins. |
Volume: |
577 |
Issue: |
7791 |
Pages: |
576-581 |
|
•
•
•
•
•
|
Publication |
First Author: |
Beck DB |
Year: |
2012 |
Journal: |
Genes Dev |
Title: |
The role of PR-Set7 in replication licensing depends on Suv4-20h. |
Volume: |
26 |
Issue: |
23 |
Pages: |
2580-9 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
715
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
424
 |
Fragment?: |
false |
|
•
•
•
•
•
|