Type |
Details |
Score |
Publication |
First Author: |
Velocigene |
Year: |
2008 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the KOMP project by Velocigene (Regeneron Pharmaceuticals) |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Wellcome Trust Sanger Institute |
Year: |
2010 |
Journal: |
MGI Direct Data Submission |
Title: |
Alleles produced for the EUCOMM and EUCOMMTools projects by the Wellcome Trust Sanger Institute |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Shanghai Model Organisms Center |
Year: |
2017 |
Journal: |
MGI Direct Data Submission |
Title: |
Information obtained from the Shanghai Model Organisms Center (SMOC), Shanghai, China |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics and the International Mouse Phenotyping Consortium (IMPC) |
Year: |
2014 |
Journal: |
Database Release |
Title: |
Obtaining and Loading Phenotype Annotations from the International Mouse Phenotyping Consortium (IMPC) Database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Hansen GM |
Year: |
2008 |
Journal: |
Genome Res |
Title: |
Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. |
Volume: |
18 |
Issue: |
10 |
Pages: |
1670-9 |
|
•
•
•
•
•
|
Publication |
First Author: |
DDB, FB, MGI, GOA, ZFIN curators |
Year: |
2001 |
|
Title: |
Gene Ontology annotation through association of InterPro records with GO terms |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Kawai J |
Year: |
2001 |
Journal: |
Nature |
Title: |
Functional annotation of a full-length mouse cDNA collection. |
Volume: |
409 |
Issue: |
6821 |
Pages: |
685-90 |
|
•
•
•
•
•
|
Publication |
First Author: |
Adams DJ |
Year: |
2024 |
Journal: |
Nature |
Title: |
Genetic determinants of micronucleus formation in vivo. |
Volume: |
627 |
Issue: |
8002 |
Pages: |
130-136 |
|
•
•
•
•
•
|
Publication |
First Author: |
MGD Nomenclature Committee |
Year: |
1995 |
|
Title: |
Nomenclature Committee Use |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
GemPharmatech |
Year: |
2020 |
|
Title: |
GemPharmatech Website. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Serna M |
Year: |
2015 |
Journal: |
J Cell Sci |
Title: |
The structure of the complex between α-tubulin, TBCE and TBCB reveals a tubulin dimer dissociation mechanism. |
Volume: |
128 |
Issue: |
9 |
Pages: |
1824-34 |
|
•
•
•
•
•
|
Publication |
First Author: |
Fleming JR |
Year: |
2013 |
Journal: |
FEBS J |
Title: |
The architecture of Trypanosoma brucei tubulin-binding cofactor B and implications for function. |
Volume: |
280 |
Issue: |
14 |
Pages: |
3270-80 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Tubulin-folding cofactor B (TBCB) is one of protein cofactors A through E that is required for the folding of tubulins prior to their incorporation into microtubules and heterodimer assembly. TBCB comprises an N-terminal ubiquitin-like (Ubl) domain and a C-terminal cytoskeleton-associated protein with glycine-rich segment (CAP-Gly) domain. The Ubl domain of TBCB is essential for proper folding and assembly of tubulin alpha. It has a β-grasp Ubl fold, a common structure involved in protein-protein interactions. Ubiquitin (Ub) is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. TBC-A through E are necessary for the biogenesis of microtubules and for cell viability [, ]. |
|
•
•
•
•
•
|
Publication |
First Author: |
Wang W |
Year: |
2005 |
Journal: |
Curr Biol |
Title: |
Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway. |
Volume: |
15 |
Issue: |
22 |
Pages: |
2050-5 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
108
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
84
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
108
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Guasch A |
Year: |
2002 |
Journal: |
J Mol Biol |
Title: |
Three-dimensional structure of human tubulin chaperone cofactor A. |
Volume: |
318 |
Issue: |
4 |
Pages: |
1139-49 |
|
•
•
•
•
•
|
Publication |
First Author: |
Abruzzi KC |
Year: |
2002 |
Journal: |
Mol Cell Biol |
Title: |
Protection from free beta-tubulin by the beta-tubulin binding protein Rbl2p. |
Volume: |
22 |
Issue: |
1 |
Pages: |
138-47 |
|
•
•
•
•
•
|
Publication |
First Author: |
You L |
Year: |
2004 |
Journal: |
J Mol Biol |
Title: |
Model for the yeast cofactor A-beta-tubulin complex based on computational docking and mutagensis. |
Volume: |
341 |
Issue: |
5 |
Pages: |
1343-54 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
84
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
72
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Tian G |
Year: |
2013 |
Journal: |
Methods Cell Biol |
Title: |
Tubulin-specific chaperones: components of a molecular machine that assembles the α/β heterodimer. |
Volume: |
115 |
|
Pages: |
155-71 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kirik V |
Year: |
2002 |
Journal: |
Curr Biol |
Title: |
Functional analysis of the tubulin-folding cofactor C in Arabidopsis thaliana. |
Volume: |
12 |
Issue: |
17 |
Pages: |
1519-23 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bartolini F |
Year: |
2002 |
Journal: |
J Biol Chem |
Title: |
Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. |
Volume: |
277 |
Issue: |
17 |
Pages: |
14629-34 |
|
•
•
•
•
•
|
Publication |
First Author: |
Steinborn K |
Year: |
2002 |
Journal: |
Genes Dev |
Title: |
The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. |
Volume: |
16 |
Issue: |
8 |
Pages: |
959-71 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mayer U |
Year: |
1999 |
Journal: |
Eur J Cell Biol |
Title: |
Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. |
Volume: |
78 |
Issue: |
2 |
Pages: |
100-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Nithianantham S |
Year: |
2015 |
Journal: |
Elife |
Title: |
Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics. |
Volume: |
4 |
|
|
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The tubulin heterodimer consists of one alpha- and one beta-tubulin polypeptide. In humans, five tubulin-specific chaperones termed TBCA/B/C/D/E are essential for bring the alpha- and beta-tubulin subunits together into a tightly associated heterodimer. Following the generation of quasi-native beta- and alpha-tubulin polypeptides (via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin), TBCA and TBCB bind to and stabilise newly synthesised beta- and alpha-tubulin, respectively. The exchange of beta-tubulin between TBCA and TBCD, and of alpha-tubulin between TBCB and TBCE, resulting in the formation of TBCD/beta and TBCE/alpha. These two complexes then interact with each other and form a supercomplex (TBCE/alpha/TBCD/beta). Interaction of the supercomplex with TBCC causes the disassembly of the supercomplex and the release of E-site GDP-bound alpha/beta tubulin heterodimer, which becomes polymerization competent following spontaneous exchange with GTP [].This entry represents tubulin binding cofactor A (TBCA) from animal, plants and fungi. Human TBCA functions as a molecular chaperone for beta-tubulin []. Budding yeast TBCA, also known as Rbl2, may bind transiently to free beta-tubulin, which then passes into an aggregated form that is not toxic []. The sequence identity of Rbl2 and human TBCA is only 32%, they appear to be structurally distinct and may interact with beta-tubulin by different mechanisms []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
The tubulin heterodimer consists of one alpha- and one beta-tubulin polypeptide. In humans, five tubulin-specific chaperones termed TBCA/B/C/D/E are essential for bring the alpha- and beta-tubulin subunits together into a tightly associated heterodimer. Following the generation of quasi-native beta- and alpha-tubulin polypeptides (via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin), TBCA and TBCB bind to and stabilise newly synthesised beta- and alpha-tubulin, respectively. The exchange of beta-tubulin between TBCA and TBCD, and of alpha-tubulin between TBCB and TBCE, resulting in the formation of TBCD/beta and TBCE/alpha. These two complexes then interact with each other and form a supercomplex (TBCE/alpha/TBCD/beta). Interaction of the supercomplex with TBCC causes the disassembly of the supercomplex and the release of E-site GDP-bound alpha/beta tubulin heterodimer, which becomes polymerization competent following spontaneous exchange with GTP [].This entry represents tubulin binding cofactor A (TBCA) from animal, plants and fungi. Human TBCA functions as a molecular chaperone for beta-tubulin []. Budding yeast TBCA, also known as Rbl2, may bind transiently to free beta-tubulin, which then passes into an aggregated form that is not toxic []. The sequence identity of Rbl2 and human TBCA is only 32%, they appear to be structurally distinct and may interact with beta-tubulin by different mechanisms []. The structure of TBCA has three helices forming a bundle closed fold with left-handed twist topology going up-and-down. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The tubulin heterodimer consists of one alpha- and one beta-tubulin polypeptide. In humans, five tubulin-specific chaperones termed TBCA/B/C/D/E are essential for bring the alpha- and beta-tubulin subunits together into a tightly associated heterodimer. Following the generation of quasi-native beta- and alpha-tubulin polypeptides (via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin), TBCA and TBCB bind to and stabilise newly synthesised beta- and alpha-tubulin, respectively. The exchange of beta-tubulin between TBCA and TBCD, and of alpha-tubulin between TBCB and TBCE, resulting in the formation of TBCD/beta and TBCE/alpha. These two complexes then interact with each other and form a supercomplex (TBCE/alpha/TBCD/beta). Interaction of the supercomplex with TBCC causes the disassembly of the supercomplex and the release of E-site GDP-bound alpha/beta tubulin heterodimer, which becomes polymerization competent following spontaneous exchange with GTP [].This entry represents tubulin-specific chaperone C (TBCC, also known as tubulin-folding cofactor C), which is involved in the final step of the tubulin folding pathway [, ]. In Arabidopsis thaliana, it is required for continuous microtubule cytoskeleton organisation, mitotic division, cytokinesis, and to couple cell cycle progression to cell division in embryos and endosperms [, ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The tubulin heterodimer consists of one alpha- and one beta-tubulin polypeptide. In humans, five tubulin-specific chaperones termed TBCA/B/C/D/E are essential for bring the alpha- and beta-tubulin subunits together into a tightly associated heterodimer. Following the generation of quasi-native beta- and alpha-tubulin polypeptides (via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin), TBCA and TBCB bind to and stabilise newly synthesised beta- and alpha-tubulin, respectively. The exchange of beta-tubulin between TBCA and TBCD, and of alpha-tubulin between TBCB and TBCE, resulting in the formation of TBCD/beta and TBCE/alpha. These two complexes then interact with each other and form a supercomplex (TBCE/alpha/TBCD/beta). Interaction of the supercomplex with TBCC causes the disassembly of the supercomplex and the release of E-site GDP-bound alpha/beta tubulin heterodimer, which becomes polymerization competent following spontaneous exchange with GTP [].This entry represents tubulin-folding cofactor D (TBCD) and its homologues. Its ability to interact with beta tubulin is regulated via its interaction with ARL2 (ADP ribosylation factor-like protein 2), a small monomeric G protein. ARL2 inhibits the beta-tubulin GTPase activating protein (GAP) activity of TBCD, and its interaction with native tubulin dimers [, ]. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
352
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
151
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Lytle BL |
Year: |
2004 |
Journal: |
J Biol Chem |
Title: |
Solution structure of a ubiquitin-like domain from tubulin-binding cofactor B. |
Volume: |
279 |
Issue: |
45 |
Pages: |
46787-93 |
|
•
•
•
•
•
|
Publication |
First Author: |
Bhamidipati A |
Year: |
2000 |
Journal: |
J Cell Biol |
Title: |
ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. |
Volume: |
149 |
Issue: |
5 |
Pages: |
1087-96 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
244
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1196
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
341
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
341
 |
Fragment?: |
false |
|
•
•
•
•
•
|