Type |
Details |
Score |
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Carninci P |
Year: |
2005 |
Journal: |
Science |
Title: |
The transcriptional landscape of the mammalian genome. |
Volume: |
309 |
Issue: |
5740 |
Pages: |
1559-63 |
|
•
•
•
•
•
|
Publication |
First Author: |
AgBase, BHF-UCL, Parkinson's UK-UCL, dictyBase, HGNC, Roslin Institute, FlyBase and UniProtKB curators |
Year: |
2011 |
|
Title: |
Manual transfer of experimentally-verified manual GO annotation data to orthologs by curator judgment of sequence similarity |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
GOA curators |
Year: |
2016 |
|
Title: |
Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Krenciute G |
Year: |
2013 |
Journal: |
J Biol Chem |
Title: |
Nuclear BAG6-UBL4A-GET4 complex mediates DNA damage signaling and cell death. |
Volume: |
288 |
Issue: |
28 |
Pages: |
20547-57 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
UBL4A (also known as GdX) is a ubiquitously expressed ubiquitin-like (Ubl) protein that forms a complex with partner proteins and participates in the protein processing through endoplasmic reticulum (ER), acting as a chaperone. As a key component of the BCL2-associated athanogene 6 (BAG6) chaperone complex, UBL4A plays a role in mediating DNA damage signaling and cell death [, ]. UBL4A also regulates insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching []. Moreover, UBL4A specifically stabilises the TC45/STAT3 association and promotes dephosphorylation of STAT3 to repress tumorigenesis [].This is the ubiquitin-like domain of UBL4A and related proteins. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Liu Y |
Year: |
2014 |
Journal: |
Elife |
Title: |
USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. |
Volume: |
3 |
|
Pages: |
e01369 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kuwabara N |
Year: |
2015 |
Journal: |
J Biol Chem |
Title: |
Structure of a BAG6 (Bcl-2-associated athanogene 6)-Ubl4a (ubiquitin-like protein 4a) complex reveals a novel binding interface that functions in tail-anchored protein biogenesis. |
Volume: |
290 |
Issue: |
15 |
Pages: |
9387-98 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This is the C-terminal domain of Ubiquitin-like protein 4A, an orthologue of yeast Get5. In budding yeasts, Get proteins directly mediate the insertion of newly synthesized TA proteins into endoplasmic reticulum membranes. Similarly, mammalian BAG6, Ubl4a, and SGTA make up a trimeric complex that binds TA proteins post-translationally and then loads them onto the cytosolic ATPase TRC40, which in turn targets them to the endoplasmic reticulum. Structural studies show that this C-terminal TUGS domain of Ubl4a is essential for BAG6 tethering. Given that BAG6 mediates oligomeric complex formation of Ubl4a, TRC35, and TRC40 (mammalian counterparts of Get5, Get4, and Get3, respectively), the C-terminal TUGS domain might be crucial for supporting BAG6-mediated Ubl4a-TRC35 complexformation in humans as an alternative to the direct Get5-Get4 interaction in yeast [, ]. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
172
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
152
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
188
 |
Fragment?: |
false |
|
•
•
•
•
•
|