Type |
Details |
Score |
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
122
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
651
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
211
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
75
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
93
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
700
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
199
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
798
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
301
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
129
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Nishizawa M |
Year: |
2001 |
Journal: |
Yeast |
Title: |
Negative regulation of transcription by the yeast global transcription factors, Gal11 and Sin4. |
Volume: |
18 |
Issue: |
12 |
Pages: |
1099-110 |
|
•
•
•
•
•
|
Publication |
First Author: |
Angiolillo A |
Year: |
2002 |
Journal: |
Gene |
Title: |
The human homologue of the mouse Surf5 gene encodes multiple alternatively spliced transcripts. |
Volume: |
284 |
Issue: |
1-2 |
Pages: |
169-78 |
|
•
•
•
•
•
|
Publication |
First Author: |
Xiao Z |
Year: |
1993 |
Journal: |
Mol Cell Biol |
Title: |
CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. |
Volume: |
13 |
Issue: |
8 |
Pages: |
4691-702 |
|
•
•
•
•
•
|
Publication |
First Author: |
Takahashi H |
Year: |
2009 |
Journal: |
Genes Cells |
Title: |
Saccharomyces cerevisiae Med9 comprises two functionally distinct domains that play different roles in transcriptional regulation. |
Volume: |
14 |
Issue: |
1 |
Pages: |
53-67 |
|
•
•
•
•
•
|
Publication |
First Author: |
Xiao H |
Year: |
1999 |
Journal: |
J Biol Chem |
Title: |
The human homologue of Drosophila TRF-proximal protein is associated with an RNA polymerase II-SRB complex. |
Volume: |
274 |
Issue: |
7 |
Pages: |
3937-40 |
|
•
•
•
•
•
|
Publication |
First Author: |
Covitz PA |
Year: |
1994 |
Journal: |
Genetics |
Title: |
Requirement for RGR1 and SIN4 in RME1-dependent repression in Saccharomyces cerevisiae. |
Volume: |
138 |
Issue: |
3 |
Pages: |
577-86 |
|
•
•
•
•
•
|
Publication |
First Author: |
Jiang YW |
Year: |
1995 |
Journal: |
Genetics |
Title: |
Genetic and physical interactions between yeast RGR1 and SIN4 in chromatin organization and transcriptional regulation. |
Volume: |
140 |
Issue: |
1 |
Pages: |
47-54 |
|
•
•
•
•
•
|
Publication |
First Author: |
Yang F |
Year: |
2006 |
Journal: |
Nature |
Title: |
An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. |
Volume: |
442 |
Issue: |
7103 |
Pages: |
700-4 |
|
•
•
•
•
•
|
Publication |
First Author: |
Larivière L |
Year: |
2006 |
Journal: |
Nat Struct Mol Biol |
Title: |
Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. |
Volume: |
13 |
Issue: |
10 |
Pages: |
895-901 |
|
•
•
•
•
•
|
Publication |
First Author: |
Conaway RC |
Year: |
2005 |
Journal: |
Trends Biochem Sci |
Title: |
The mammalian Mediator complex and its role in transcriptional regulation. |
Volume: |
30 |
Issue: |
5 |
Pages: |
250-5 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This entry represents subunit Med22 of the Mediator complex. It contains several eukaryotic Surfeit locus protein 5 (SURF5) sequences. The human Surfeit locus has been mapped on chromosome 9q34.1. The locus includes six tightly clustered housekeeping genes (Surf1-6), and the gene organisation is similar in human, mouse and chicken Surfeit loci []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directlywith MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Proteins in this entry are subunit Med20 of the Mediator complex, and is found in the non-essential part of the head []. and related to the TATA-binding protein (TBP). TBP is a highly conserved RNA polymerase II general transcription factor that binds to the core promoter and initiates assembly of the pre-initiation complex. Human TRF has been shown to associate with an RNA polymerase II-SRB complex []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Regulation of mRNA synthesis requires intermediary proteins that transduce regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Three types of intermediary factors that enable the basal transcription machinery to respond to transcriptional activator proteins bound to regulatory DNA sequences have been identified: (i) TAFIIs, which associate with TATA-binding protein (TBP) to form TFIID; (ii) mediator, which associates with RNA polymerase II to form a holo-polymerase; and (iii) coactivators such as human upstream stimulatory activity (USA), mammalian CBP/P300, yeast ADA complex, and HMG proteins. The interaction of these multiprotein complexes with activators and general transcription factors is essential for transcriptional regulation. This family of proteins represent the transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and which are conserved from yeast to humans [].This entry represents the Med6 subunit of the Mediator complex in fungi. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Regulation of mRNA synthesis requires intermediary proteins that transduce regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Three types of intermediary factors that enable the basal transcription machinery to respond to transcriptional activator proteins bound to regulatory DNA sequences have been identified: (i) TAFIIs, which associate with TATA-binding protein (TBP) to form TFIID; (ii) mediator, which associates with RNA polymerase II to form a holo-polymerase; and (iii) coactivators such as human upstream stimulatory activity (USA), mammalian CBP/P300, yeast ADA complex, and HMG proteins. The interaction of these multiprotein complexes with activators and general transcription factors is essential for transcriptional regulation.This family of proteins represent the transcriptional mediator protein subunit 6 that is required for activation of many RNA polymerase II promoters and which are conserved from yeast to humans []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Regulation of mRNA synthesis requires intermediary proteins that transduce regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Three types of intermediary factors that enable the basal transcription machinery to respond to transcriptional activator proteins bound to regulatory DNA sequences have been identified: (i) TAFIIs, which associate with TATA-binding protein (TBP) to form TFIID; (ii) mediator, which associates with RNA polymerase II to form a holo-polymerase; and (iii) coactivators such as human upstream stimulatory activity (USA), mammalian CBP/P300, yeast ADA complex, and HMG proteins. The interaction of these multiprotein complexes with activators and general transcription factors is essential for transcriptional regulation. This family of proteins represent the transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and which are conserved from yeast to humans [].This group represents a RNA polymerase II mediator complex, subunit 6, metazoa/plant types. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This family consists of several eukaryotic proteins, which are homologues of the yeast MED7 protein. Activation of gene transcription in metazoans is a multistep process that is triggered by factors that recognise transcriptional enhancer sites in DNA. These factors work with co-activators such as MED7 to direct transcriptional initiation by the RNA polymerase II apparatus []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Med18 is one subunit of the Mediator complex and a component of the head module that is involved in stimulating basal RNA polymerase II (PolII) transcription. Med18 consists of an eight-stranded β-barrel with a central pore and three flanking helices. It complexes with Med8 and Med20 proteins by forming a heterodimer of two-fold symmetry with Med20 and binding the C-terminal α-helix region of Med8 across the top of its barrel. This complex creates a multipartite TBP-binding site that can be modulated by transcriptional activators []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II.The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.The proteins in this entry represent subunit Med15 of the Mediator complex. They contain a single copy of the approximately 70 residue ARC105 domain. The ARC105 domain of the ARC-Mediator co-activator is a three-helix bundle with marked similarity to the KIX domain. The sterol regulatory element binding protein (SREBP) family of transcription activators use the ARC105 subunit to activate target genes in the regulation of cholesterol and fatty acid homeostasis. In addition, ARC105 is a critical transducer of gene activation signals that control early metazoan development []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This entry represents subunit Med17 of the Mediator complex. The Med17 subunit is located within the head domain and is essential for cell viability to the extent that a mutant strain of Saccharomyces cerevisiae (Baker's yeast) lacking it shows all RNA polymerase II-dependent transcription ceasing at non-permissive temperatures. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependentgenes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Arc32, or Med8, is one of the subunits of the Mediator complex of RNA polymerase II. The region conserved contains two alpha helices putatively necessary for binding to other subunits within the core of the Mediator complex. The N terminus of Med8 binds to the essential core Head part of Mediator and the C terminus hinges to Med18 on the non-essential part of the Head that also includes Med20 []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
This superfamily consists of several eukaryotic proteins, which are homologues of the yeast MED7 protein. Activation of gene transcription in metazoans is a multistep process that is triggered by factors that recognise transcriptional enhancer sites in DNA. These factors work with co-activators such as MED7 to direct transcriptional initiation by the RNA polymerase II apparatus [].The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This entry represents subunit Med9 of the Mediator complex. Subunit Med9 is part of the middle module of the Mediator complex []; this associates with the core polymerase subunits to form the RNA polymerase II holoenzyme.Med9 alternatively known as the chromosome segregation protein, CSE2 () is required, along with CSE1 () for accurate mitotic chromosome segregation in Saccharomyces cerevisiae (Baker's yeast) []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This superfamily represents the MED7 and MED21 subunits. MED7 works as a co-activator with the factors responsible of the activation of gene transcription in metazoans, it directs the transcriptional initiation by the RNA polymerase II apparatus [].MED21 has been known as Srb7 in yeasts, hSrb7 in humans and Trap 19 in Drosophila. The heterodimer of the two subunits MED7 and MED21 appears to act as a hinge between the middle and the tail regions of Mediator []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Saccharomyces cerevisiae (Baker's yeast) RGR1 mediator complex subunit affects chromatin structure, transcriptional regulation of diverse genes, and sporulation. It is required for glucose repression, HO repression, RME1 repression and sporulation [, ]. This subunit is also found in higher eukaryotes and MED14 is the agreed unified nomenclature for this subunit []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.Med29, along with Med11 and Med28, in mammals, is part of the core head-region of the complex. Med29 is the apparent orthologue of the Drosophila melanogaster Intersex protein, which interacts directly with, and functions as a transcriptional coactivator for, the DNA-binding transcription factor Doublesex, so it is likely that mammalian Med29 serves as a target for one or more DNA-binding transcriptional activators []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This family represents subunit 15 of the Mediator complex in fungi. It contains Saccharomyces cerevisiae GAL11 (Med15) protein. Gal11 (Med15) and Sin4 (Med16) proteins are S. cerevisiae global transcription factors that regulate transcription of a variety of genes, both positively and negatively. Gal11, in a major part, functions in the activation of transcription, whereas Sin4 has an opposite role []. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extendedconformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation.The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP.This entry includes subunit Med31 of the Mediator complex and the Saccharomyces cerevisiae homologue, Soh1. Soh1 is responsible for the repression of temperature sensitive growth of the Hpr1 mutant []and has been found to be a component of the RNA polymerase II transcription complex. Soh1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the Soh1 protein may serve to couple these two processes [].Med31 is organised as a four helix bundle and with the N-terminal part of subunit Med7 forms a submodule of the middle module of the mediator core which is unique in structure and function. In vivo, Med7N/31 has a predominantly positive function on the expression of a specific subset of genes, including genes involved in methionine metabolism and iron transport []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
2157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
2190
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
2182
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
2157
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
2185
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry represents cyclin C family, which includes cyclins C and yeast RNA polymerase II holoenzyme cyclin-like subunit (also known as Ssn8/Srb11).Cyclin C can regulate both cell cycle progression and gene transcription: cyclin C forms complexes with Cdk8 and induces the transcription of Cdk1. TheCdk8-cyclin C complex is a component of the RNA polymerase II holoenzyme, where it functions as a kinase that phosphorylates the C-terminal domain, and can alsorepress transcription by phosphorylating the Cdk7-cyclin H subunits of the general transcription initiator factor TFIIH []. The Cdk7-cyclin H complex can activate many other cyclin-Cdk complexes directly involved in cell cycle progression, such as Cdk2, Cdk4, and Cdc2 (Cdk1) [].Ssn8/Srb11 is a component of the SRB8-11 complex (consists of SRB8, SSN2/SRB9, SSN3/SRB10 and SSN8/SRB11), which is a regulatory module of the mediator complex that is involved in regulation of basal and activated RNA polymerase II-dependent transcription [, ]. |
|
•
•
•
•
•
|
Publication |
First Author: |
Lee YC |
Year: |
1997 |
Journal: |
Mol Cell Biol |
Title: |
A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. |
Volume: |
17 |
Issue: |
8 |
Pages: |
4622-32 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
246
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
195
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
144
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
142
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
90
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Burroughs AM |
Year: |
2013 |
Journal: |
Biol Direct |
Title: |
Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. |
Volume: |
8 |
|
Pages: |
13 |
|
•
•
•
•
•
|
Publication |
First Author: |
Baumli S |
Year: |
2005 |
Journal: |
J Biol Chem |
Title: |
A conserved mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. |
Volume: |
280 |
Issue: |
18 |
Pages: |
18171-8 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
789
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1020
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
766
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1135
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
749
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
354
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
218
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
749
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
87
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
739
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1170
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
769
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
639
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
77
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
639
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Bourbon HM |
Year: |
2004 |
Journal: |
Mol Cell |
Title: |
A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. |
Volume: |
14 |
Issue: |
5 |
Pages: |
553-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Nam Y |
Year: |
2006 |
Journal: |
Cell |
Title: |
Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. |
Volume: |
124 |
Issue: |
5 |
Pages: |
973-83 |
|
•
•
•
•
•
|
Publication |
First Author: |
Kovall RA |
Year: |
2008 |
Journal: |
Oncogene |
Title: |
More complicated than it looks: assembly of Notch pathway transcription complexes. |
Volume: |
27 |
Issue: |
38 |
Pages: |
5099-109 |
|
•
•
•
•
•
|
Publication |
First Author: |
McElhinny AS |
Year: |
2008 |
Journal: |
Oncogene |
Title: |
Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. |
Volume: |
27 |
Issue: |
38 |
Pages: |
5138-47 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shen H |
Year: |
2006 |
Journal: |
Genes Dev |
Title: |
The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. |
Volume: |
20 |
Issue: |
6 |
Pages: |
675-88 |
|
•
•
•
•
•
|
Publication |
First Author: |
Zhao Y |
Year: |
2007 |
Journal: |
J Biol Chem |
Title: |
The notch regulator MAML1 interacts with p53 and functions as a coactivator. |
Volume: |
282 |
Issue: |
16 |
Pages: |
11969-81 |
|
•
•
•
•
•
|
Publication |
First Author: |
Alves-Guerra MC |
Year: |
2007 |
Journal: |
Cancer Res |
Title: |
Mastermind-like 1 Is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. |
Volume: |
67 |
Issue: |
18 |
Pages: |
8690-8 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chiang MY |
Year: |
2006 |
Journal: |
Mol Cell Biol |
Title: |
Identification of a conserved negative regulatory sequence that influences the leukemogenic activity of NOTCH1. |
Volume: |
26 |
Issue: |
16 |
Pages: |
6261-71 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wu L |
Year: |
2007 |
Journal: |
Blood |
Title: |
The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. |
Volume: |
110 |
Issue: |
10 |
Pages: |
3618-23 |
|
•
•
•
•
•
|
Publication |
First Author: |
Liu H |
Year: |
2009 |
Journal: |
Circ Res |
Title: |
NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. |
Volume: |
104 |
Issue: |
4 |
Pages: |
466-75 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wu L |
Year: |
2005 |
Journal: |
EMBO J |
Title: |
Transforming activity of MECT1-MAML2 fusion oncoprotein is mediated by constitutive CREB activation. |
Volume: |
24 |
Issue: |
13 |
Pages: |
2391-402 |
|
•
•
•
•
•
|
Publication |
First Author: |
Fryer CJ |
Year: |
2004 |
Journal: |
Mol Cell |
Title: |
Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. |
Volume: |
16 |
Issue: |
4 |
Pages: |
509-20 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wu L |
Year: |
2002 |
Journal: |
Mol Cell Biol |
Title: |
Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. |
Volume: |
22 |
Issue: |
21 |
Pages: |
7688-700 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
131
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
489
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
826
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
585
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
414
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
680
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
443
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
500
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
249
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
414
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Fan HY |
Year: |
1994 |
Journal: |
Genetics |
Title: |
Characterization of mutations that suppress the temperature-sensitive growth of the hpr1 delta mutant of Saccharomyces cerevisiae. |
Volume: |
137 |
Issue: |
4 |
Pages: |
945-56 |
|
•
•
•
•
•
|
Publication |
First Author: |
Fan HY |
Year: |
1996 |
Journal: |
Genetics |
Title: |
Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1 delta of Saccharomyces cerevisiae. |
Volume: |
142 |
Issue: |
3 |
Pages: |
749-59 |
|
•
•
•
•
•
|
Publication |
First Author: |
Koschubs T |
Year: |
2009 |
Journal: |
EMBO J |
Title: |
Identification, structure, and functional requirement of the Mediator submodule Med7N/31. |
Volume: |
28 |
Issue: |
1 |
Pages: |
69-80 |
|
•
•
•
•
•
|
Publication |
First Author: |
Fryer CJ |
Year: |
2002 |
Journal: |
Genes Dev |
Title: |
Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. |
Volume: |
16 |
Issue: |
11 |
Pages: |
1397-411 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
This entry represents the N-terminal domain found in a family of neurogenic mastermind-like proteins (MAMLs), which act as critical transcriptional co-activators for Notch signaling [, , ]. Notch receptors are cleaved upon ligand engagement and the intracellular domain of Notch shuttles to the nucleus. MAMLs form a functional DNA-binding complex with the cleaved Notch receptor and the transcription factor CSL, thereby regulating transcriptional events that are specific to the Notch pathway. MAML proteins may also play roles as key transcriptional co-activators in other signal transduction pathways as well, including: muscle differentiation and myopathies (MEF2C) [], tumour suppressor pathway (p53) []and colon carcinoma survival (beta-catenin) []. MAML proteins could mediate cross-talk among the various signaling pathways and the diverse activities of the MAML proteins converge to impact normal biological processes and human diseases, including cancers.The N-terminal domain of MAML proteins adopt an elongated kinked helix that wraps around ANK and CSL forming one of the complexes in the build-up of the Notch transcriptional complex for recruiting general transcription factors []. This N-terminal domain is responsible for its interaction with the ankyrin repeat region of the Notch proteins NOTCH1 [], NOTCH2 [], NOTCH3 []and NOTCH4. It forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa/CBF1, and also binds CREBBP/CBP []and CDK8 []. The C-terminal region is required for transcriptional activation. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This family includes the neurogenic mastermind-like proteins 1-3 (MAML1-3) from chordates, which act as critical transcriptional co-activators for Notch signaling [, ]. Notch receptors are cleaved upon ligand engagement and the intracellular domain of Notch shuttles to the nucleus. MAMLs form a functional DNA-binding complex with the cleaved Notch receptor and the transcription factor CSL, thereby regulating transcriptional events that are specific to the Notch pathway. MAML proteins may also play roles as key transcriptional co-activators in other signal transduction pathways as well, including: muscle differentiation and myopathies (MEF2C) [], tumour suppressor pathway (p53) []and colon carcinoma survival (beta-catenin) []. MAML proteins could mediate cross-talk among the various signaling pathways and the diverse activities of the MAML proteins converge to impact normal biological processes and human diseases, including cancers.They consist of an N-terminal domain which adopt an elongated kinked helix that wraps around ANK and CSL forming one of the complexes in the build-up of the Notch transcriptional complex for recruiting general transcription factors [, ]]. This N-terminal domain is responsible for its interaction with the ankyrin repeat region of the Notch proteins NOTCH1 [], NOTCH2 [], NOTCH3 []and NOTCH4. It forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa/CBF1, and also binds CREBBP/CBP []and CDK8 []. The C-terminal region is required for transcriptional activation. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This entry represents the N-terminal domain found in a family of neurogenic mastermind-like proteins (MAMLs), which act as critical transcriptional co-activators for Notch signaling [, , ]. Notch receptors are cleaved upon ligand engagement and the intracellular domain of Notch shuttles to the nucleus. MAMLs form a functional DNA-binding complex with the cleaved Notch receptor and the transcription factor CSL, thereby regulating transcriptional events that are specific to the Notch pathway. MAML proteins may also play roles as key transcriptional co-activators in other signal transduction pathways as well, including: muscle differentiation and myopathies (MEF2C) [], tumour suppressor pathway (p53) []and colon carcinoma survival (beta-catenin) []. MAML proteins could mediate cross-talk among the various signaling pathways and the diverse activities of the MAML proteins converge to impact normal biological processes and human diseases, including cancers.The N-terminal domain of MAML proteins adopt an elongated kinked helix that wraps around ANK and CSL forming one of the complexes in the build-up of the Notch transcriptional complex for recruiting general transcription factors []. This N-terminal domain is responsible for its interaction with the ankyrin repeat region of the Notch proteins NOTCH1 [], NOTCH2 [], NOTCH3 []and NOTCH4. It forms a DNA-binding complex with Notch proteins and RBPSUH/RBP-J kappa/CBF1, and also binds CREBBP/CBP []and CDK8 []. The C-terminal region is required for transcriptional activation. |
|
•
•
•
•
•
|
Publication |
First Author: |
Larivière L |
Year: |
2008 |
Journal: |
Genes Dev |
Title: |
Structure-system correlation identifies a gene regulatory Mediator submodule. |
Volume: |
22 |
Issue: |
7 |
Pages: |
872-7 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
192
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Garrett S |
Year: |
2001 |
Journal: |
Mol Cell Biol |
Title: |
Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. |
Volume: |
21 |
Issue: |
1 |
Pages: |
88-99 |
|
•
•
•
•
•
|
Publication |
First Author: |
Akoulitchev S |
Year: |
2000 |
Journal: |
Nature |
Title: |
TFIIH is negatively regulated by cdk8-containing mediator complexes. |
Volume: |
407 |
Issue: |
6800 |
Pages: |
102-6 |
|
•
•
•
•
•
|