Type |
Details |
Score |
Publication |
First Author: |
Pierce NW |
Year: |
2013 |
Journal: |
Cell |
Title: |
Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. |
Volume: |
153 |
Issue: |
1 |
Pages: |
206-15 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
This entry includes cullin-associated NEDD8-dissociated proteins 1 (CAND1 also known as TIP120A) and 2 (CAND2); these proteins have a C-terminal TATA-binding protein interacting (TIP20) domain. CAND1 is required for the assembly of the SCF E3 ubiquitin ligase complex. The SCF ubiquitin E3 ligase consists of SKP1, CUL1 and F-box protein, and it regulates ubiquitin-dependent proteolysis. CAND1 binds to CUL1, preventing it from associating with the other components that form the ligase. Neddylation of CUL1 (or the presence of SKP1 and ATP) dissociates it from CAND1, allowing the ligase complex to form [, , ]. CAND1 also interacts with CUL3, a component of the Cul3-dependent E3 ubiquitin ligase complex []. CAND1 has been proposed to be an F-box protein exchange factor, and as substrates of the ligase complex are degraded by the proteasome and depleted, the ligase complex enters an intermediate, deneddylated state when CAND1 can bind, promoting dissociation of the substrate-recognition subunit and recruitment of a new substrate-recognition subunit []. CAND2 is uncharacterized but is assumed to have similar roles to CAND1. |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Publication |
First Author: |
Lykke-Andersen K |
Year: |
2003 |
Journal: |
Mol Cell Biol |
Title: |
Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death. |
Volume: |
23 |
Issue: |
19 |
Pages: |
6790-7 |
|
•
•
•
•
•
|
Publication |
First Author: |
Shirogane T |
Year: |
2005 |
Journal: |
J Biol Chem |
Title: |
SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. |
Volume: |
280 |
Issue: |
29 |
Pages: |
26863-72 |
|
•
•
•
•
•
|
Publication |
First Author: |
Huang G |
Year: |
2011 |
Journal: |
J Biol Chem |
Title: |
SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. |
Volume: |
286 |
Issue: |
12 |
Pages: |
10297-304 |
|
•
•
•
•
•
|
Publication |
First Author: |
Freed E |
Year: |
1999 |
Journal: |
Genes Dev |
Title: |
Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. |
Volume: |
13 |
Issue: |
17 |
Pages: |
2242-57 |
|
•
•
•
•
•
|
Publication |
First Author: |
Dias DC |
Year: |
2002 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. |
Volume: |
99 |
Issue: |
26 |
Pages: |
16601-6 |
|
•
•
•
•
•
|
Publication |
First Author: |
Chen F |
Year: |
2017 |
Journal: |
J Biol Chem |
Title: |
The E3 ubiquitin ligase SCFFBXL14 complex stimulates neuronal differentiation by targeting the Notch signaling factor HES1 for proteolysis. |
Volume: |
292 |
Issue: |
49 |
Pages: |
20100-20112 |
|
•
•
•
•
•
|
Publication |
First Author: |
Wan P |
Year: |
2019 |
Journal: |
FASEB J |
Title: |
Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. |
Volume: |
33 |
Issue: |
4 |
Pages: |
5793-5807 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
582
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
265
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
111
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
85
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
243
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
110
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
433
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
87
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
265
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
252
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Kipreos ET |
Year: |
1996 |
Journal: |
Cell |
Title: |
cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. |
Volume: |
85 |
Issue: |
6 |
Pages: |
829-39 |
|
•
•
•
•
•
|
Publication |
First Author: |
Goldenberg SJ |
Year: |
2004 |
Journal: |
Cell |
Title: |
Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. |
Volume: |
119 |
Issue: |
4 |
Pages: |
517-28 |
|
•
•
•
•
•
|
Publication |
First Author: |
Petroski MD |
Year: |
2005 |
Journal: |
Nat Rev Mol Cell Biol |
Title: |
Function and regulation of cullin-RING ubiquitin ligases. |
Volume: |
6 |
Issue: |
1 |
Pages: |
9-20 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
90
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
66
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
51
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Publication |
First Author: |
Cope GA |
Year: |
2002 |
Journal: |
Science |
Title: |
Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. |
Volume: |
298 |
Issue: |
5593 |
Pages: |
608-11 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Conserved_site |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact with specific adaptor proteins [, , ].This entry represents a conserved site found in various cullin proteins. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact with specific adaptor proteins [, , ].This superfamily represents the N-terminal cullin repeat-containing domain; these repeats form a domain with a multi-helical 2-layered alpha/alpha structure, which in turn is folded into a right-handed superhelix. A similar structural domain is found in exocyst complex components such as EXO70 and EXO84. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact with specific adaptor proteins [, , ]. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Homologous_superfamily |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact with specific adaptor proteins [, , ].This entry represents the cullin-homology domain superfamily. This domain is composed of three subdomains: a 4-helical bundle domain, an alpha+beta domain, and a winged helix-like domain. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact withspecific adaptor proteins [, , ].This entry represents the N-terminal region of cullin proteins, which consists of several domains, including cullin repeat domain, a 4-helical bundle domain, an alpha+beta domain, and a winged helix-like domain. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
The COP9 signalosome (CSN) is a conserved protein complex that regulates the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes [], which leads to a decrease in Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2 []. Protein kinases CK2 and D, which phosphorylate proteins such as cJun and p53 resulting in their degradation by the ubiquitin-26S proteasome system, also binds to CSN [, ]. The mammalian CSN typically consistis of eight subunits designated CSN1-CSN8. The fission yeast possesses a smaller version of the CSN, consisting only of six subunits, whereas a more distant CSN-like complex has been described in Saccharomyces cerevisiae [].COP9 signalosome complex subunit 5 (Rri1, CSN5 or JAB1) is a metallo-isopeptidase (MEROPS identifier M67.002) that releases the ubiquitin-like protein Nedd8 from the Cul1 subunit of SCF ubiquitin ligases []. Rri1 binds a zinc ion via the histidines in an HXH motif and an aspartic acid C-terminal to this motif []. This entry includes CSN5 homologues from yeast to human. |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Family |
Description: |
Cullins are a family of hydrophobic proteins that act as scaffolds for ubiquitin ligases (E3). Cullins are found throughout eukaryotes. Humans express seven cullins (Cul1, 2, 3, 4A, 4B, 5 and 7), each forming part of a multi-subunit ubiquitin complex. Cullin-RING ubiquitin ligases (CRLs), such as Cul1 (SCF) [], play an essential role in targeting proteins for ubiquitin-mediated destruction; as such, they are diverse in terms of composition and function, regulating many different processes from glucose sensing and DNA replication to limb patterning and circadian rhythms. The catalytic core of CRLs consists of a RING protein and a cullin family member. For Cul1, the C-terminal cullin-homology domain binds the RING protein. The RING protein appears to function as a docking site for ubiquitin-conjugating enzymes (E2s). Other proteins contain a cullin-homology domain, such as the APC2 subunit of the anaphase-promoting complex/cyclosome and the p53 cytoplasmic anchor PARC; both APC2 and PARC have ubiquitin ligase activity. The N-terminal region of cullins is more variable, and is used to interact with specific adaptor proteins [, , ]. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
699
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
745
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
776
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
970
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
780
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
768
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
759
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
780
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
594
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
792
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
748
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
651
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
896
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
702
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
776
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
855
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
828
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein Coding Gene |
Type: |
protein_coding_gene |
Organism: |
mouse, laboratory |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1230
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
377
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1235
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
1235
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
487
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
246
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
327
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
247
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
347
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
700
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
387
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
640
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
640
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
578
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
837
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
833
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
552
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
224
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
838
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
340
 |
Fragment?: |
true |
|
•
•
•
•
•
|