Type |
Details |
Score |
Publication |
First Author: |
Zambrowicz BP |
Year: |
2003 |
Journal: |
Proc Natl Acad Sci U S A |
Title: |
Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. |
Volume: |
100 |
Issue: |
24 |
Pages: |
14109-14 |
|
•
•
•
•
•
|
Publication |
First Author: |
Skarnes WC |
Year: |
2011 |
Journal: |
Nature |
Title: |
A conditional knockout resource for the genome-wide study of mouse gene function. |
Volume: |
474 |
Issue: |
7351 |
Pages: |
337-42 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and National Center for Biotechnology Information (NCBI) |
Year: |
2008 |
Journal: |
Database Download |
Title: |
Mouse Gene Trap Data Load from dbGSS |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
UniProt-GOA |
Year: |
2012 |
|
Title: |
Gene Ontology annotation based on UniProtKB/Swiss-Prot keyword mapping |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
Year: |
2004 |
Journal: |
Database Release |
Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Okazaki Y |
Year: |
2002 |
Journal: |
Nature |
Title: |
Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. |
Volume: |
420 |
Issue: |
6915 |
Pages: |
563-73 |
|
•
•
•
•
•
|
Publication |
First Author: |
The Gene Ontology Consortium |
Year: |
2010 |
|
Title: |
Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Diez-Roux G |
Year: |
2011 |
Journal: |
PLoS Biol |
Title: |
A high-resolution anatomical atlas of the transcriptome in the mouse embryo. |
Volume: |
9 |
Issue: |
1 |
Pages: |
e1000582 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2002 |
|
Title: |
Mouse Genome Informatics Computational Sequence to Gene Associations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2). |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
MGI Genome Annotation Group and UniGene Staff |
Year: |
2015 |
Journal: |
Database Download |
Title: |
MGI-UniGene Interconnection Effort |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas |
Year: |
2010 |
|
Title: |
Annotation inferences using phylogenetic trees |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Database and National Center for Biotechnology Information |
Year: |
2000 |
Journal: |
Database Release |
Title: |
Entrez Gene Load |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Allen Institute for Brain Science |
Year: |
2004 |
Journal: |
Allen Institute |
Title: |
Allen Brain Atlas: mouse riboprobes |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI) |
Year: |
2010 |
Journal: |
Database Download |
Title: |
Consensus CDS project |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Group |
Year: |
2003 |
Journal: |
Database Procedure |
Title: |
Automatic Encodes (AutoE) Reference |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bairoch A |
Year: |
1999 |
Journal: |
Database Release |
Title: |
SWISS-PROT Annotated protein sequence database |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics |
Year: |
2010 |
Journal: |
Database Release |
Title: |
Protein Ontology Association Load. |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2005 |
|
Title: |
Obtaining and loading genome assembly coordinates from NCBI annotations |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Mouse Genome Informatics Scientific Curators |
Year: |
2009 |
Journal: |
Database Download |
Title: |
Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform |
|
|
|
|
•
•
•
•
•
|
Publication |
First Author: |
Bohdanowicz M |
Year: |
2012 |
Journal: |
Mol Biol Cell |
Title: |
Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and attenuates Akt signaling. |
Volume: |
23 |
Issue: |
1 |
Pages: |
176-87 |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
186
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
219
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Publication |
First Author: |
Jefferson AB |
Year: |
1995 |
Journal: |
J Biol Chem |
Title: |
Properties of type II inositol polyphosphate 5-phosphatase. |
Volume: |
270 |
Issue: |
16 |
Pages: |
9370-7 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
This entry represents the PH domain found in the N terminus of type II inositol 1,4,5-trisphosphate 5-phosphatase (INPP5B). The structure of this domain has been revealed []. INPP5B hydrolyses phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signalling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signalling events [].INPP5B contains a PH domain, a 5-phosphatase domain, an ASH domain and a Rho-GAP domain. It shares ~45% sequence identity with OCRL1 (not included in this entry) and has the same domain organization. However, a loop in the Rho GAP domain contains a second clathrin box which is absent in INPP5B. INPP5B shares most interacting partners with OCRL, except for clathrin and the endocytic clathrin adaptor AP-2 []. |
|
•
•
•
•
•
|
Publication |
First Author: |
Pirruccello M |
Year: |
2012 |
Journal: |
Trends Biochem Sci |
Title: |
Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. |
Volume: |
37 |
Issue: |
4 |
Pages: |
134-43 |
|
•
•
•
•
•
|
Publication |
First Author: |
Mao Y |
Year: |
2009 |
Journal: |
EMBO J |
Title: |
A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. |
Volume: |
28 |
Issue: |
13 |
Pages: |
1831-42 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
OCRL1 hydrolyzes phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events []. OCRL1 resides on vesicular structures throughout the endosomal system and the Golgi complex, and is also present at the plasma membrane in membrane ruffles and at late-stage endocytic clathrin-coated pits. It binds clathrin, clathrin adaptors, several GTPases, and the endocytic proteins APPL1 and Ses1/2 []. Mutations in the OCRL1 gene cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure []. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterised by renal Fanconi syndrome in the absence of extrarenal pathologies [].OCRL1 shares ~45% sequence identity with INPP5B and has the same domain organization. However, a loop in the Rho GAP domain contains a second clathrin box which is absent in INPP5B. INPP5B shares most interacting partners with OCRL, except for clathrin and the endocytic clathrin adaptor AP-2 []. OCRL1 contains a PH domain, a 5-phosphatase domain, an ASH domain and a Rho-GAP domain. The RhoGAP domain lacks the catalytic arginine and is catalytically inactive. However, the RhoGAP domain of OCRL interacts with Rac and Cdc42, but only the Cdc42 interaction is GTP-dependent. The RhoGAP domain also interacts with three endocytic proteins containing the F&H motif: APPL1, Ses1 and Ses2. OCRL1 interacts with Rab GTPase (Rab8) through its ASH domain []. This entry represents the inositol polyphosphate 5-phosphatase (INPP5c) domain of OCRL1/INPP5B. |
|
•
•
•
•
•
|
Publication |
First Author: |
Grieve AG |
Year: |
2011 |
Journal: |
PLoS One |
Title: |
Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells. |
Volume: |
6 |
Issue: |
8 |
Pages: |
e24044 |
|
•
•
•
•
•
|
Publication |
First Author: |
Vicinanza M |
Year: |
2011 |
Journal: |
EMBO J |
Title: |
OCRL controls trafficking through early endosomes via PtdIns4,5Pâ‚‚-dependent regulation of endosomal actin. |
Volume: |
30 |
Issue: |
24 |
Pages: |
4970-85 |
|
•
•
•
•
•
|
Publication |
First Author: |
De Matteis MA |
Year: |
2017 |
Journal: |
Nat Rev Nephrol |
Title: |
The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. |
Volume: |
13 |
Issue: |
8 |
Pages: |
455-470 |
|
•
•
•
•
•
|
Protein Domain |
Type: |
Domain |
Description: |
OCRL1 hydrolyzes phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P2) and the signaling molecule phosphatidylinositol 1,4,5-trisphosphate (PtIns(1,4,5)P3), and thereby modulates cellular signaling events []. OCRL1 resides on vesicular structures throughout the endosomal system and the Golgi complex, and is also present at the plasma membrane in membrane ruffles and at late-stage endocytic clathrin-coated pits. It binds clathrin, clathrin adaptors, several GTPases, and the endocytic proteins APPL1 and Ses1/2 []. Mutations in the OCRL1 gene cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure []. Mutations in OCRL can also give rise to a milder pathology, Dent disease 2, which is characterised by renal Fanconi syndrome in the absence of extrarenal pathologies [].OCRL1 shares ~45% sequence identity with INPP5B (not included in this entry) and has the same domain organization. However, a loop in the Rho GAP domain contains a second clathrin box which is absent in INPP5B. INPP5B shares most interacting partners with OCRL, except for clathrin and the endocytic clathrin adaptor AP-2 []. OCRL1 contains a PH domain, a 5-phosphatase domain, an ASH domain and a Rho-GAP domain. The RhoGAP domain lacks the catalytic arginine and is catalytically inactive. However, the RhoGAP domain of OCRL interacts with Rac and Cdc42, but only the Cdc42 interaction is GTP-dependent. The RhoGAP domain also interacts with three endocytic proteins containing the F&H motif: APPL1, Ses1 and Ses2. OCRL1 interacts with Rab GTPase (Rab8) through its ASH domain []. This entry represents the PH domain of OCRL1 []. The PH domain connects to the 5-phosphatase domain, which has a Dnase I-like fold []. |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
511
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
993
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
995
 |
Fragment?: |
true |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
900
 |
Fragment?: |
false |
|
•
•
•
•
•
|
Protein |
Organism: |
Mus musculus/domesticus |
Length: |
757
 |
Fragment?: |
true |
|
•
•
•
•
•
|