|  Help  |  About  |  Contact Us

Search our database by keyword

Examples

  • Search this entire website. Enter identifiers, names or keywords for genes, diseases, strains, ontology terms, etc. (e.g. Pax6, Parkinson, ataxia)
  • Use OR to search for either of two terms (e.g. OR mus) or quotation marks to search for phrases (e.g. "dna binding").
  • Boolean search syntax is supported: e.g. Balb* for partial matches or mus AND NOT embryo to exclude a term

Search results 301 to 336 out of 336 for Pon2

<< First    < Previous  |  Next >    Last >>
0.019s
Type Details Score
Publication        
First Author: GOA curators
Year: 2016
Title: Automatic transfer of experimentally verified manual GO annotation data to orthologs using Ensembl Compara
Publication      
First Author: The Jackson Laboratory Mouse Radiation Hybrid Database
Year: 2004
Journal: Database Release
Title: Mouse T31 Radiation Hybrid Data Load
Publication
First Author: Okazaki Y
Year: 2002
Journal: Nature
Title: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.
Volume: 420
Issue: 6915
Pages: 563-73
Publication        
First Author: The Gene Ontology Consortium
Year: 2010
Title: Automated transfer of experimentally-verified manual GO annotation data to mouse-human orthologs
Publication
First Author: Diez-Roux G
Year: 2011
Journal: PLoS Biol
Title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo.
Volume: 9
Issue: 1
Pages: e1000582
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2010
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome U74 Array Platform (A, B, C v2).
Publication        
First Author: Marc Feuermann, Huaiyu Mi, Pascale Gaudet, Dustin Ebert, Anushya Muruganujan, Paul Thomas
Year: 2010
Title: Annotation inferences using phylogenetic trees
Publication      
First Author: Mouse Genome Database and National Center for Biotechnology Information
Year: 2000
Journal: Database Release
Title: Entrez Gene Load
Publication      
First Author: Allen Institute for Brain Science
Year: 2004
Journal: Allen Institute
Title: Allen Brain Atlas: mouse riboprobes
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Gene 1.0 ST Array Platform
Publication      
First Author: Mouse Genome Informatics (MGI) and The National Center for Biotechnology Information (NCBI)
Year: 2010
Journal: Database Download
Title: Consensus CDS project
Publication      
First Author: Mouse Genome Informatics Group
Year: 2003
Journal: Database Procedure
Title: Automatic Encodes (AutoE) Reference
Publication      
First Author: Bairoch A
Year: 1999
Journal: Database Release
Title: SWISS-PROT Annotated protein sequence database
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and Loading Genome Assembly Coordinates from Ensembl Annotations
Publication      
First Author: Mouse Genome Informatics
Year: 2010
Journal: Database Release
Title: Protein Ontology Association Load.
Publication        
First Author: Mouse Genome Informatics Scientific Curators
Year: 2005
Title: Obtaining and loading genome assembly coordinates from NCBI annotations
Publication      
First Author: Mouse Genome Informatics Scientific Curators
Year: 2009
Journal: Database Download
Title: Mouse Microarray Data Integration in Mouse Genome Informatics, the Affymetrix GeneChip Mouse Genome 430 2.0 Array Platform
Protein Domain
Type: Family
Description: The serum paraoxonases/arylesterases are enzymes that catalyse the hydrolysisof the toxic metabolites of a variety of organophosphorus insecticides. Theenzymes hydrolyse a broad spectrum of organophosphate substrates, including paraoxon and a number of aromatic carboxylic acid esters (e.g., phenylacetate), and hence confer resistance to organophosphate toxicity []. Mammals have 3 distinct paraoxonase types, termed PON1-3 [, ]. In mice andhumans, the PON genes are found on the same chromosome in close proximity. PON activity has been found in variety of tissues, with highest levels in liver and serum - the source of serum PON is thought to be the liver. Unlike mammals, fish and avian species lack paraoxonase activity. Human and rabbit PONs appear to have two distinct Ca2+ binding sites, onerequired for stability and one required for catalytic activity. The Ca2+dependency of PONs suggests a mechanism of hydrolysis where Ca2+ acts as theelectrophillic catalyst, like that proposed for phospholipase A2. Theparaoxonase enzymes, PON1 and PON3, are high density lipoprotein (HDL)-associated proteins capable of preventing oxidative modification of lowdensity lipoproteins (LPL) []. Although PON2 has oxidative properties, theenzyme does not associate with HDL.Within a given species, PON1, PON2 and PON3 share ~60% amino acid sequence identity, whereas between mammalian species particular PONs (1,2 or 3) share79-90% identity at the amino acid level. Human PON1 and PON3 share numerous conserved phosphorylation and N-glycosylation sites; however, it is not known whether the PON proteins are modified at these sites, or whether modification at these sites is required for activity in vivo [].
Publication  
First Author: Rodrigo L
Year: 1997
Journal: Biochem J
Title: Purification and characterization of paraoxon hydrolase from rat liver.
Volume: 321 ( Pt 3)
Pages: 595-601
Publication
First Author: Hegele RA
Year: 1995
Journal: Arterioscler Thromb Vasc Biol
Title: A polymorphism of the paraoxonase gene associated with variation in plasma lipoproteins in a genetic isolate.
Volume: 15
Issue: 1
Pages: 89-95
Protein Domain
Type: Family
Description: The serum paraoxonases/arylesterases are enzymes that catalyse the hydrolysisof the toxic metabolites of a variety of organophosphorus insecticides. Theenzymes hydrolyse a broad spectrum of organophosphate substrates, including paraoxon and a number of aromatic carboxylic acid esters (e.g., phenylacetate), and hence confer resistance to organophosphate toxicity []. Mammals have 3 distinct paraoxonase types, termed PON1-3 [, ]. In mice andhumans, the PON genes are found on the same chromosome in close proximity. PON activity has been found in variety of tissues, with highest levels in liver and serum - the source of serum PON is thought to be the liver. Unlike mammals, fish and avian species lack paraoxonase activity. Human and rabbit PONs appear to have two distinct Ca2+ binding sites, onerequired for stability and one required for catalytic activity. The Ca2+dependency of PONs suggests a mechanism of hydrolysis where Ca2+ acts as theelectrophillic catalyst, like that proposed for phospholipase A2. Theparaoxonase enzymes, PON1 and PON3, are high density lipoprotein (HDL)-associated proteins capable of preventing oxidative modification of lowdensity lipoproteins (LPL) []. Although PON2 has oxidative properties, theenzyme does not associate with HDL.Within a given species, PON1, PON2 and PON3 share ~60% amino acid sequence identity, whereas between mammalian species particular PONs (1,2 or 3) share79-90% identity at the amino acid level. Human PON1 and PON3 share numerous conserved phosphorylation and N-glycosylation sites; however, it is not known whether the PON proteins are modified at these sites, or whether modification at these sites is required for activity in vivo []. This family consists of arylesterases (Also known as serum paraoxonase) . These enzymes hydrolyse organophosphorus esters such as paraoxon and are found in the liver and blood. They confer resistance to organophosphate toxicity []. Human arylesterase (PON1) is associated with HDL and may protect against LDL oxidation [].
Protein Domain
Type: Family
Description: The serum paraoxonases/arylesterases are enzymes that catalyse the hydrolysisof the toxic metabolites of a variety of organophosphorus insecticides. Theenzymes hydrolyse a broad spectrum of organophosphate substrates, including paraoxon and a number of aromatic carboxylic acid esters (e.g., phenylacetate), and hence confer resistance to organophosphate toxicity []. Mammals have 3 distinct paraoxonase types, termed PON1-3 [, ]. In mice andhumans, the PON genes are found on the same chromosome in close proximity. PON activity has been found in variety of tissues, with highest levels in liver and serum - the source of serum PON is thought to be the liver. Unlike mammals, fish and avian species lack paraoxonase activity. Human and rabbit PONs appear to have two distinct Ca2+ binding sites, onerequired for stability and one required for catalytic activity. The Ca2+dependency of PONs suggests a mechanism of hydrolysis where Ca2+ acts as theelectrophillic catalyst, like that proposed for phospholipase A2. Theparaoxonase enzymes, PON1 and PON3, are high density lipoprotein (HDL)-associated proteins capable of preventing oxidative modification of lowdensity lipoproteins (LPL) []. Although PON2 has oxidative properties, theenzyme does not associate with HDL.Within a given species, PON1, PON2 and PON3 share ~60% amino acid sequence identity, whereas between mammalian species particular PONs (1,2 or 3) share79-90% identity at the amino acid level. Human PON1 and PON3 share numerous conserved phosphorylation and N-glycosylation sites; however, it is not known whether the PON proteins are modified at these sites, or whether modification at these sites is required for activity in vivo []. Rabbit and human serum PON1 also hydrolyse a variety oflactones and cycliccarbonate esters, including naturally occurring lactones and pharmacologicalagents []. Humans have 2 common PON1 allozymes, determined by the presenceof either arginine or glutamine at position 191. The A-type allozyme (glutamine at position 191) causes low paraoxonase activity []; thispolymorphism is associated with variations in cholesterol and lipoproteinlevels.
Publication
First Author: Billecke S
Year: 2000
Journal: Drug Metab Dispos
Title: Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters.
Volume: 28
Issue: 11
Pages: 1335-42
Publication
First Author: Nagarajan A
Year: 2017
Journal: Mol Cell
Title: Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport.
Volume: 67
Issue: 4
Pages: 685-701.e6
Protein
Organism: Mus musculus/domesticus
Length: 200  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 108  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 135  
Fragment?: true
Protein
Organism: Mus musculus/domesticus
Length: 354  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 354  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 355  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 181  
Fragment?: false
Protein
Organism: Mus musculus/domesticus
Length: 256  
Fragment?: true
Publication
First Author: Schweikert EM
Year: 2012
Journal: Cell Death Differ
Title: PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death.
Volume: 19
Issue: 9
Pages: 1549-60
Publication
First Author: Shi S
Year: 2020
Journal: J Biol Chem
Title: Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel.
Volume: 295
Issue: 15
Pages: 4950-4962
Publication
First Author: Rozenberg O
Year: 2003
Journal: Free Radic Biol Med
Title: Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice.
Volume: 34
Issue: 6
Pages: 774-84
Publication
First Author: Saito Y
Year: 1999
Journal: Nature
Title: Molecular characterization of the melanin-concentrating-hormone receptor.
Volume: 400
Issue: 6741
Pages: 265-9