| Type |
Details |
Score |
| Publication |
| First Author: |
Duval D |
| Year: |
2003 |
| Journal: |
FEBS Lett |
| Title: |
The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. |
| Volume: |
554 |
| Issue: |
1-2 |
| Pages: |
111-8 |
|
•
•
•
•
•
|
| Protein Domain |
| Type: |
Domain |
| Description: |
Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1, ), a ubiquitin-conjugating enzyme (E2, ), and a ubiquitin ligase (E3, , ), which work sequentially in a cascade. There are many different E3 ligases, which are responsible for the type of ubiquitin chain formed, the specificity of the target protein, and the regulation of the ubiquitinylation process []. Ubiquitinylation is an important regulatory tool that controls the concentration of key signalling proteins, such as those involved in cell cycle control, as well as removing misfolded, damaged or mutant proteins that could be harmful to the cell. Several ubiquitin-like molecules have been discovered, such as Ufm1 (), SUMO1 (), NEDD8, Rad23 (), Elongin B and Parkin (), the latter being involved in Parkinson's disease [].Ubiquitin is a protein of 76 amino acid residues, found in all eukaryotic cells and whose sequence is extremely well conserved from protozoan to vertebrates. Ubiquitin acts through its post-translational attachment (ubiquitinylation) to other proteins, where these modifications alter the function, location or trafficking of the protein, or targets it for destruction by the 26S proteasome []. The terminal glycine in the C-terminal 4-residue tail of ubiquitin can form an isopeptide bond with a lysine residue in the target protein, or with a lysine in another ubiquitin molecule to form a ubiquitin chain that attaches itself to a target protein. Ubiquitin has seven lysine residues, any one of which can be used to link ubiquitin molecules together, resulting in different structures that alter the target protein in different ways. It appears that Lys(11)-, Lys(29) and Lys(48)-linked poly-ubiquitin chains target the protein to the proteasome for degradation, while mono-ubiquitinylatedand Lys(6)- or Lys(63)-linked poly-ubiquitin chains signal reversible modifications in protein activity, location or trafficking []. For example, Lys(63)-linked poly-ubiquitinylation is known to be involved in DNA damage tolerance, inflammatory response, protein trafficking and signal transduction through kinase activation []. In addition, the length of the ubiquitin chain alters the fate of the target protein. Regulatory proteins such as transcription factors and histones are frequent targets of ubquitinylation []. |
|
•
•
•
•
•
|
| Protein Domain |
| Type: |
Conserved_site |
| Description: |
Ubiquitinylation is an ATP-dependent process that involves the action of at least three enzymes: a ubiquitin-activating enzyme (E1, ), a ubiquitin-conjugating enzyme (E2, ), and a ubiquitin ligase (E3, , ), which work sequentially in a cascade. There are many different E3 ligases, which are responsible for the type of ubiquitin chain formed, the specificity of the target protein, and the regulation of the ubiquitinylation process []. Ubiquitinylation is an important regulatory tool that controls the concentration of key signalling proteins, such as those involved in cell cycle control, as well as removing misfolded, damaged or mutant proteins that could be harmful to the cell. Several ubiquitin-like molecules have been discovered, such as Ufm1 (), SUMO1 (), NEDD8, Rad23 (), Elongin B and Parkin (), the latter being involved in Parkinson's disease [].Ubiquitin is a protein of 76 amino acid residues, found in all eukaryotic cells and whose sequence is extremely well conserved from protozoan to vertebrates. Ubiquitin acts through its post-translational attachment (ubiquitinylation) to other proteins, where these modifications alter the function, location or trafficking of the protein, or targets it for destruction by the 26S proteasome []. The terminal glycine in the C-terminal 4-residue tail of ubiquitin can form an isopeptide bond with a lysine residue in the target protein, or with a lysine in another ubiquitin molecule to form a ubiquitin chain that attaches itself to a target protein. Ubiquitin has seven lysine residues, any one of which can be used to link ubiquitin molecules together, resulting in different structures that alter the target protein in different ways. It appears that Lys(11)-, Lys(29) and Lys(48)-linked poly-ubiquitin chains target the protein to the proteasome for degradation, while mono-ubiquitinylated and Lys(6)- or Lys(63)-linked poly-ubiquitin chains signal reversible modifications in protein activity, location or trafficking []. For example, Lys(63)-linked poly-ubiquitinylation is known to be involved in DNA damage tolerance, inflammatory response, protein trafficking and signal transduction through kinase activation []. In addition, the length of the ubiquitin chain alters the fate of the target protein. Regulatory proteins such as transcription factors and histones are frequent targets of ubquitinylation [].This entry represents the conserved region at the centre of the Ubiquitin sequence. |
|
•
•
•
•
•
|
| Publication |
| First Author: |
de Napoles M |
| Year: |
2004 |
| Journal: |
Dev Cell |
| Title: |
Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. |
| Volume: |
7 |
| Issue: |
5 |
| Pages: |
663-76 |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
734
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
305
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
354
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
305
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
278
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
77
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
582
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
201
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
202
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
153
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
71
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
658
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
76
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
236
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
193
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
101
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
368
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
232
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
201
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
209
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
115
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
253
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Publication |
| First Author: |
Lois LM |
| Year: |
2005 |
| Journal: |
EMBO J |
| Title: |
Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. |
| Volume: |
24 |
| Issue: |
3 |
| Pages: |
439-51 |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
81
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
74
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
157
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
157
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
81
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
157
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
68
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
172
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
152
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
157
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Publication |
| First Author: |
Pickart CM |
| Year: |
2004 |
| Journal: |
Curr Opin Chem Biol |
| Title: |
Polyubiquitin chains: polymeric protein signals. |
| Volume: |
8 |
| Issue: |
6 |
| Pages: |
610-6 |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
128
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
232
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
133
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
128
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
96
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
137
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
137
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Publication |
| First Author: |
Burger AM |
| Year: |
2004 |
| Journal: |
Eur J Cancer |
| Title: |
The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. |
| Volume: |
40 |
| Issue: |
15 |
| Pages: |
2217-29 |
|
•
•
•
•
•
|
| Publication |
| First Author: |
Passmore LA |
| Year: |
2004 |
| Journal: |
Biochem J |
| Title: |
Getting into position: the catalytic mechanisms of protein ubiquitylation. |
| Volume: |
379 |
| Issue: |
Pt 3 |
| Pages: |
513-25 |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1154
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
227
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
162
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
188
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
146
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
52
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
90
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
385
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1082
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
563
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
522
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1107
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
133
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1122
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1108
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
1136
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Publication |
| First Author: |
Combes AN |
| Year: |
2009 |
| Journal: |
Dev Dyn |
| Title: |
Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. |
| Volume: |
238 |
| Issue: |
5 |
| Pages: |
1033-41 |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
156
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
156
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
628
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
739
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
430
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
758
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
488
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
493
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
749
 |
| Fragment?: |
true |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
458
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
719
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Protein |
| Organism: |
Mus musculus/domesticus |
| Length: |
458
 |
| Fragment?: |
false |
|
•
•
•
•
•
|
| Publication |
| First Author: |
The Jackson Laboratory |
| Year: |
2012 |
| Journal: |
MGI Direct Data Submission |
| Title: |
Alleles produced for the KOMP project by The Jackson Laboratory |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
The Jackson Laboratory Backcross DNA Panel Mapping Resource |
| Year: |
1999 |
| Journal: |
Database Release |
| Title: |
JAX BSS Panel Mapping Data |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
UniProt-GOA |
| Year: |
2012 |
|
| Title: |
Gene Ontology annotation based on UniPathway vocabulary mapping |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
Birgit Meldal and Sandra Orchard (1). (1) European Bioinformatics Institute (EBI), Hinxton, Cambridgeshire, United Kingdom |
| Year: |
2023 |
|
| Title: |
Manual transfer of experimentally-verified manual GO annotation data to homologous complexes by curator judgment of sequence, composition and function similarity |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
Mouse Genome Database and National Center for Biotechnology Information Editorial Staff Collaboration |
| Year: |
2001 |
|
| Title: |
LocusLink Collaboration |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
Mouse Genome Informatics Scientific Curators |
| Year: |
2001 |
|
| Title: |
RIKEN Data Curation in Mouse Genome Informatics |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
Ko MS |
| Year: |
2000 |
| Journal: |
Development |
| Title: |
Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. |
| Volume: |
127 |
| Issue: |
8 |
| Pages: |
1737-49 |
|
•
•
•
•
•
|
| Publication |
| First Author: |
GUDMAP Consortium |
| Year: |
2004 |
| Journal: |
www.gudmap.org |
| Title: |
GUDMAP: the GenitoUrinary Development Molecular Anatomy Project |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
Mouse Genome Informatics Scientific Curators |
| Year: |
2003 |
|
| Title: |
MGI Sequence Curation Reference |
|
|
|
|
•
•
•
•
•
|
| Publication |
| First Author: |
The Jackson Laboratory Mouse Radiation Hybrid Database |
| Year: |
2004 |
| Journal: |
Database Release |
| Title: |
Mouse T31 Radiation Hybrid Data Load |
|
|
|
|
•
•
•
•
•
|