|  Help  |  About  |  Contact Us

Publication : Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.

First Author  Harrell MD Year  2007
Journal  Physiol Genomics Volume  28
Issue  3 Pages  273-83
PubMed ID  16985003 Mgi Jnum  J:119550
Mgi Id  MGI:3702439 Doi  10.1152/physiolgenomics.00163.2006
Citation  Harrell MD, et al. (2007) Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics 28(3):273-83
abstractText  The immature and mature heart differ from each other in terms of excitability, action potential properties, contractility, and relaxation. This includes upregulation of repolarizing K(+) currents, an enhanced inward rectifier K(+) (Kir) current, and changes in Ca(2+), Na(+), and Cl(-) currents. At the molecular level, the developmental regulation of ion channels is scantily described. Using a large-scale real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, we performed a comprehensive analysis of ion channel transcript expression during perinatal development in the embryonic (embryonic day 17.5), neonatal (postnatal days 1-2), and adult Swiss-Webster mouse hearts. These data are compared with publicly available microarray data sets (Cardiogenomics project). Developmental mRNA expression for several transcripts was consistent with the published literature. For example, transcripts such as Kir2.1, Kir3.1, Nav1.5, Cav1.2, etc. were upregulated after birth, whereas others [e.g., Ca(2+)-activated K(+) (KCa)2.3 and minK] were downregulated. Cl(-) channel transcripts were expressed at higher levels in immature heart, particularly those that are activated by intracellular Ca(2+). Defining alterations in the ion channel transcriptome during perinatal development will lead to a much improved understanding of the electrophysiological alterations occurring in the heart after birth. Our study may have important repercussions in understanding the mechanisms and consequences of electrophysiological alterations in infants and may pave the way for better understanding of clinically relevant events such as congenital abnormalities, cardiomyopathies, heart failure, arrhythmias, cardiac drug therapy, and the sudden infant death syndrome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

123 Bio Entities

Trail: Publication

461 Expression

Trail: Publication