|  Help  |  About  |  Contact Us

Publication : Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation.

First Author  Jachetti E Year  2015
Journal  Cancer Res Volume  75
Issue  10 Pages  2095-108
PubMed ID  25808872 Mgi Jnum  J:221115
Mgi Id  MGI:5638263 Doi  10.1158/0008-5472.CAN-14-2346
Citation  Jachetti E, et al. (2015) Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Res 75(10):2095-108
abstractText  Precociously disseminated cancer cells may seed quiescent sites of future metastasis if they can protect themselves from immune surveillance. However, there is little knowledge about how such sites might be achieved. Here, we present evidence that prostate cancer stem-like cells (CSC) can be found in histopathologically negative prostate draining lymph nodes (PDLN) in mice harboring oncogene-driven prostate intraepithelial neoplasia (mPIN). PDLN-derived CSCs were phenotypically and functionally identical to CSC obtained from mPIN lesions, but distinct from CSCs obtained from frank prostate tumors. CSC derived from either PDLN or mPIN used the extracellular matrix protein Tenascin-C (TNC) to inhibit T-cell receptor-dependent T-cell activation, proliferation, and cytokine production. Mechanistically, TNC interacted with alpha5beta1 integrin on the cell surface of T cells, inhibiting reorganization of the actin-based cytoskeleton therein required for proper T-cell activation. CSC from both PDLN and mPIN lesions also expressed CXCR4 and migrated in response to its ligand CXCL12, which was overexpressed in PDLN upon mPIN development. CXCR4 was critical for the development of PDLN-derived CSC, as in vivo administration of CXCR4 inhibitors prevented establishment in PDLN of an immunosuppressive microenvironment. Taken together, our work establishes a pivotal role for TNC in tuning the local immune response to establish equilibrium between disseminated nodal CSC and the immune system. Cancer Res; 75(10); 2095-108. (c)2015 AACR.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression