First Author | Hua F | Year | 2007 |
Journal | J Immunol | Volume | 178 |
Issue | 11 | Pages | 7317-24 |
PubMed ID | 17513782 | Mgi Jnum | J:147828 |
Mgi Id | MGI:3842263 | Doi | 10.4049/jimmunol.178.11.7317 |
Citation | Hua F, et al. (2007) Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178(11):7317-24 |
abstractText | TLRs play a critical role in the induction of innate and adaptive immunity. However, TLRs have also been reported to mediate the pathophysiology of organ damage following ischemia/reperfusion (I/R) injury. We have reported that TLR4(-/-) mice show decreased myocardial injury following I/R; however, the protective mechanisms have not been elucidated. We examined the role of the PI3K/Akt signaling pathway in TLR4(-/-) cardioprotection following I/R injury. TLR4(-/-) and age-matched wild-type (WT) mice were subjected to myocardial ischemia for 45 min, followed by reperfusion for 4 h. Pharmacologic inhibitors of PI3K (wortmannin or LY294002) were administered 1 h before myocardial I/R. Myocardial infarct size/area at risk was reduced by 51.2% in TLR4(-/-) vs WT mice. Cardiac myocyte apoptosis was also increased in WT vs TLR4(-/-) mice following I/R. Pharmacologic blockade of PI3K abrogated myocardial protection in TLR4(-/-) mice following I/R. Specifically, heart infarct size/area at risk was increased by 98% in wortmannin and 101% in LY294002-treated TLR4(-/-) mice, when compared with control TLR4(-/-) mice. These data indicate that protection against myocardial I/R injury in TLR4(-/-) mice is mediated through a PI3K/Akt-dependent mechanism. The mechanisms by which PI3K/Akt are increased in the TLR4(-/-) myocardium may involve increased phosphorylation/inactivation of myocardial phosphatase and tensin homolog deleted on chromosome 10 as well as increased phosphorylation/inactivation of myocardial glycogen synthase kinase-3beta. These data implicate innate immune signaling pathways in the pathology of acute myocardial I/R injury. These data also suggest that modulation of TLR4/PI3K/Akt-dependent signaling pathways may be a viable strategy for reducing myocardial I/R injury. |